4.5 Article

Modeling and kinetics study of acid anthraquinone oxidation using ozone: energy consumption analysis

期刊

CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY
卷 17, 期 8, 页码 2431-2439

出版社

SPRINGER
DOI: 10.1007/s10098-015-0967-0

关键词

Ozonation process; Kinetics study; Modeling; Artificial neural network; Energy consumption

向作者/读者索取更多资源

An anthraquinone dye as a persistent organic material was eliminated by an environmentally safe method. In this work, decolorization of acid green 25 (AG25) was carried out using ozonation in a semibatch bubble column. Results showed that the process efficiency was affected by three operational parameters of influent ozone mass flow, initial AG25 concentration, and reaction time. Moreover, inhibitory effects of ethanol, 2-propanol, and carbonate as scavengers on the process efficiency were also evaluated. Kinetics study indicated that AG25 removal was a pseudo first-order reaction with respect to various concentrations of AG25, ozone, and radical scavenger. An artificial neural network (ANN) was developed to predict the process performance. The obtained weights from ANN were used for sensitivity analysis of the process. This analysis indicated that relative importance of influent ozone mass flow, initial AG25 concentration, and reaction time was 22, 14, and 64 %, respectively. Cost-effectiveness analysis of the process was implemented by calculating electrical energy consumption at various concentrations of AG25. Based on the results, the range of electrical energy consumption was found between 1.2 and 2.3 kWh/m(3)/order.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据