4.7 Article

On the potential of light trapping in multiscale textured thin film solar cells

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 144, 期 -, 页码 300-308

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2015.09.008

关键词

Light trapping; Zinc oxide; Effective medium approximation; Realistic interface morphology; Parasitic losses

向作者/读者索取更多资源

The light propagation in multiscale textured thin film silicon solar cells is studied experimentally and numerically. The short circuit current and energy conversion efficiency of multiscale textured amorphous silicon thin film solar cells are increased compared to nanoscale textured substrates. A gain of the short circuit current of 1.3 mA/cm(2) is achieved for the multiscale textured solar cell, resulting in short circuit current densities of 16.8 mA/cm(2) and energy conversion efficiency of 10.7%. The light propagation in the solar cells is determined by Finite Difference Time Domain simulations in three dimensions using realistic interface morphologies. The realistic interface morphologies of solar cells are calculated by 3D algorithms. The optical simulations reveal that the interface morphology of the back reflector of the multiscale textured solar cell has a distinct influence on the short circuit current and quantum efficiency. By tuning the optical losses of the metal back reflector, the short circuit current can be increased beyond 18 mA/cm(2). (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据