4.6 Article

Light absorption in perovskite solar cell: Fundamentals and plasmonic enhancement of infrared band absorption

期刊

SOLAR ENERGY
卷 124, 期 -, 页码 143-152

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2015.11.028

关键词

Perovskite; Solar cell; Nanoparticle array; FIT

资金

  1. Ser Cymru National Research Network in Advanced Engineering and Materials [NRNF66, NRN113]

向作者/读者索取更多资源

Perovskite solar cells have attracted great attention in recent years due to its advantageous features including low production cost, ease of fabrication and rapidly-improving device efficiencies. Research activities have been mainly devoted to the development of new manufacturing processes, materials, device structures and better stability. There is little research on the fundamentals of solar spectrum absorption in the device layers and almost no attempts have been made to optically improve the weak absorption of perovskite materials in infrared (IR) bands. Using a full-wave simulation approach, we report for the first time the contributions of each device layers in light absorptions across the whole solar spectrum. It is found that perovskite layer dominants the absorption in UV and visible bands, while the electrode layers dominants the IR bands. In order to optically enhance the light absorption in perovskite layer in IR band, we propose to use closely-spaced plasmonic nanoparticle array to achieve considerable optical absorption in the IR band, which haven't been investigated in the literature. The concept is to use plasmonics to create hot spots in active layers, which can considerably enhance the localized light absorption in perovskite material via light-flow-circulating and nonlinear absorption mechanisms. Under optimized conditions, a 58.2% IR-band absorption enhancement has been achieved in this study. This work provides a new path towards achieving higher efficiency perovskite solar cells. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据