4.7 Article

Nondestructive detection of the freshness of fruits and vegetables using gold and silver nanoparticle mediated graphene enhanced Raman spectroscopy

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 224, 期 -, 页码 413-424

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2015.08.123

关键词

GERS; Raman spectroscopy; Gold nanoparticles; Silver nanoparticles; Graphene; Fruit vegetables freshness

资金

  1. National Science Council
  2. Ministry of Science and Technology, Taiwan

向作者/读者索取更多资源

Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are expanding their horizons into widespread applications as analytical tools with immense potentials. In the current work, we demonstrated the use of a portable Raman system conjugated with graphene enhanced Raman spectroscopy (GERS) for assessing the freshness of fruits and vegetables. Dual nano-platforms have been used involving the use of gold/silver nanoparticles seeded graphene sheets (Au@G and Ag@G, respectively) as the SERS system for probing the freshness of fruits and vegetables. The data showed that Au@G offered high sensitivity, high resolution and high biocompatibility. A novel and simple GERS method based on a microdrop of Ag@G or Au@G on the fruit surface was used for the evaluation of the freshness of the fruits/vegetables. Fruits and vegetables like Wax apple, Lemon, Tomato, Red Pepper and Carrot were investigated. Market fresh and refrigerated fruits and vegetables were probed at various time intervals ranging from 1 day to 2 weeks. The results signify that some of the Raman signals increase with storage and certain peaks were found to appear with long term storage in the refrigerator. This study demonstrates that the quality of fruits and vegetables under short term (1 week) and even under cold storage conditions are impacted and should be avoided as much as possible. The changes effected on the fruits and vegetables under refrigeration and the applicability of using Au@G enabled GERS as a successful and novel platform for assessing the freshness of fruits and vegetables is elaborated. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Environmental

CelloZIFPaper: Cellulose-ZIF hybrid paper for heavy metal removal and electrochemical sensing

Hani Nasser Abdelhamid, Dimitrios Georgouvelas, Ulrica Edlund, Aji P. Mathew

Summary: This article reports a method of processing hierarchical porous zeolitic imidazolate frameworks (ZIF-8) into a cellulose paper using a sheet former. This method shows promise in overcoming the bottleneck in applying metal-organic frameworks (MOFs) in commercial products, and the resulting materials have high adsorption and electrochemical detection performance.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Multidisciplinary

New synthetic quinaldine conjugates: Assessment of their anti-cholinesterase, anti-tyrosinase and cytotoxic activities, and molecular docking analysis

Mayssa Zayene, Faisal K. Algethami, Hani Nasser Abdelhamid, Mohamed R. Elamin, Babiker Y. Abdulkhair, Youssef O. Al-Ghamdi, Hichem Ben Jannet

Summary: A new series of compounds with potential therapeutic value were designed, synthesized, and evaluated for their anti-cholinesterase, anti-tyrosinase, and cytotoxic activities. The results showed promising efficacy and suggest their potential as drug candidates.

ARABIAN JOURNAL OF CHEMISTRY (2022)

Review Chemistry, Multidisciplinary

Membranes for Oil/Water Separation: A Review

Hamouda M. Mousa, Hanan S. Fahmy, Gomaa A. M. Ali, Hani Nasser Abdelhamid, Mohamed Ateia

Summary: This review critically examines the use of membrane technology for oil/water separation. It discusses membrane properties, various materials including organic, inorganic, and hybrid membranes, membrane design, fabrication techniques, and surface modification techniques. The review also highlights the current challenges and future research directions in this field.

ADVANCED MATERIALS INTERFACES (2022)

Article Energy & Fuels

Metal-organic frameworks (MOFs)-derived Co3O4@N-doped carbon as an electrode materials for supercapacitor

Sherief A. Al Kiey, Hani Nasser Abdelhamid

Summary: Co3O4@N-doped C composites were synthesized by pyrolysis of cobalt-based metal-organic frameworks (MOF). The hierarchical porous structure of zeolitic imidazolate frameworks (ZIF-67) was utilized to enhance electron and ion transport, resulting in improved capacitive performance.

JOURNAL OF ENERGY STORAGE (2022)

Article Energy & Fuels

Covalent organic frameworks (COFs)-derived nitrogen-doped carbon/reduced graphene oxide nanocomposite as electrodes materials for supercapacitors

Mervat Ibrahim, Hani Nasser Abdelhamid, Aya Mohamed Abuelftooh, Saad G. Mohamed, Zhen Wen, Xuhui Sun

Summary: This study presents a method for the synthesis of a triazine covalent organic framework/graphene oxide nanocomposite, which is used to synthesize N-doped carbon/reduced graphene oxide. The in-situ synthesized N-doped carbon/reduced graphene oxide shows superior electrochemical performance and is employed as electrode materials for supercapacitors.

JOURNAL OF ENERGY STORAGE (2022)

Article Chemistry, Applied

Co@ZIF-8/TiO2 heterojunction for green hydrogen generation

Mahmoud R. Saleh, Haitham M. El-Bery, Hani Nasser Abdelhamid

Summary: A wet-incipient impregnation method was used to synthesize hierarchical porous bimetallic (Co, Zn)-zeolitic imidazolate frameworks (ZIF-8)/TiO2 for efficient photocatalytic water splitting. Co@ZIF-8/TiO2 exhibited significantly higher photocatalytic efficiency than TiO2, with a hydrogen generation rate of 13 mmol·h(-1)·g(-1) and a 151-fold increase in catalytic performance. The hierarchical porous structure of Co@ZIF-8 facilitated charge transfer and provided efficient transport channels. This study demonstrates the potential of hierarchical porous metal-organic frameworks (MOFs) as support and promoter in photocatalytic applications of TiO2.

APPLIED ORGANOMETALLIC CHEMISTRY (2023)

Article Chemistry, Applied

Antifungal and Nanozyme Activities of Metal-Organic Framework-derived CuO@C

Hani Nasser Abdelhamid, Ghada Abd-Elmonsef Mahmoud

Summary: In this study, copper-based metal-organic frameworks (MOFs) were used to synthesize copper oxide (CuO) embedded into carbon (CuO@C), which displayed high antifungal activity against four economic postharvest plant pathogens. The CuO@C nanoparticles inhibited the growth of the fungal species and decreased their enzyme activity, reducing the potentiality of fruit disease. The successful formation of CuO@C nanoparticles was confirmed using various characterization techniques.

APPLIED ORGANOMETALLIC CHEMISTRY (2023)

Article Chemistry, Inorganic & Nuclear

Dye encapsulation and one-pot synthesis of microporous-mesoporous zeolitic imidazolate frameworks for CO2 sorption and adenosine triphosphate biosensing

Hani Nasser Abdelhamid

Summary: One-pot co-precipitation method for synthesizing microporous-mesoporous zeolitic imidazolate frameworks-8 (ZIF-8) crystals, using organic dyes as target molecules, was reported. The crystal growth involves an intermediate phase of zinc hydroxyl nitrate nanosheets, allowing the adsorption of the dyes. The materials showed potential for CO2 adsorption and ATP biosensing.

DALTON TRANSACTIONS (2023)

Article Chemistry, Inorganic & Nuclear

Fenton-like Cerium Metal-Organic Frameworks (Ce-MOFs) for Catalytic Oxidation of Olefins, Alcohol, and Dyes Degradation

Walid Sharmoukh, Hani Nasser Abdelhamid

Summary: A metal-organic framework (MOF) of cerium (Ce) ions and 4,4 ',4 ''-nitrilotribenzoic acid linker was synthesized via a hydro thermal method. The Ce-MOF showed Fenton-like properties and displayed excellent catalytic oxidation activity for various organic compounds and water pollutants. It exhibited high efficiency in the oxidative degradation of dyes and could be recycled multiple times without significant loss of catalytic performance.

JOURNAL OF CLUSTER SCIENCE (2023)

Article Chemistry, Applied

MOFTextile: Metal-organic frameworks nanosheets incorporated cotton textile for selective vapochromic sensing and capture of pyridine

Hani Nasser Abdelhamid

Summary: Metal-organic frameworks (MOFs) have shown great potential for industrial applications but current synthesis processes limit their use due to the powder form. A solvothermal method was used to grow copper-based MOFs onto a cotton textile, creating a material called CuBDC@Textile. CuBDC@Textile demonstrated excellent vapor sensing properties and high adsorption capacity for pyridine. This dual-functional material holds promise for further research on MOFs in textile applications.

APPLIED ORGANOMETALLIC CHEMISTRY (2023)

Article Materials Science, Ceramics

ZnO-based nanocomposites for hydrogen generation via hydrolysis of Borohydride

Numa A. A. Althubiti, T. A. Taha, A. A. Azab, Hani Nasser Abdelhamid

Summary: The use of solid-state materials such as sodium borohydride for hydrogen storage and release can meet the requirements of the "Hydrogen Economy". This study investigated ZnO-based materials as catalysts for hydrogen release through the hydrolysis of NaBH4. The synthesis method produced nanocomposites consisting of ZnO-xTiO(2) and ZnO-xCeO(2) (x = 5 wt.% or 10 wt.%). Characterization techniques confirmed the phase purity and optical properties of the materials. The materials exhibited a high hydrogen generation rate and different activation energies.

JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY (2023)

Article Chemistry, Physical

Metal-organic frameworks (MOFs)-derived ZrOSO4@C for photocatalytic synthesis of benzimidazole derivatives

Hani Nasser Abdelhamid, Islam M. A. Mekhemer, Abdel-Aal M. Gaber

Summary: In this study, benzimidazole derivatives were successfully synthesized through photocatalytic synthesis using a solid-state acid catalyst ZrOSO4@C. The reaction, which allowed for condensation and cyclization in a single vessel, resulted in high yield (77-98%) and high purity of the benzimidazoles. The catalyst showed improvement in the synthesis of various benzimidazole derivatives using a wide range of aromatic aldehydes and heterocycles.

MOLECULAR CATALYSIS (2023)

Article Energy & Fuels

Enhancing photocatalytic water splitting: Comparative study of TiO2 decorated nanocrystals (Pt and Cu) using different synthesis methods

Moushira Saleh, Hani Nasser Abdelhamid, Dina M. Fouad, Haitham M. El-Bery

Summary: The use of light radiation to split water into hydrogen gas has great potential for green hydrogen production. A comparative study was conducted on the photocatalytic activity of TiO2 nanocomposites with two co-catalysts, Pt or Cu nanocrystals, using different synthesis methods. The study found that the deposition technique of the co-catalyst has a significant influence on the efficiency of photocatalysis for hydrogen production.
Article Chemistry, Inorganic & Nuclear

3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO2) and heavy metal ions

Hani Nasser Abdelhamid, Sahar Sultan, Aji P. Mathew

Summary: 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) allows for the creation of structures with high adsorption efficiency, capable of adsorbing carbon dioxide and heavy metals.

DALTON TRANSACTIONS (2023)

Article Chemistry, Multidisciplinary

In situ modified nanocellulose/alginate hydrogel composite beads for purifying mining effluents

Dimitrios Georgouvelas, Hani Nasser Abdelhamid, Ulrica Edlund, Aji P. Mathew

Summary: In this study, nanocellulose/alginate composite hydrogel beads were successfully prepared and modified with in situ TEMPO-mediated oxidation. The modified beads exhibited improved adsorption efficiency and water flux, making them promising candidates for large-volume, high flux water treatment.

NANOSCALE ADVANCES (2023)

Article Chemistry, Analytical

MEMS sensor based on MOF-derived WO3-C/In2O3 heterostructures for hydrogen detection

Mengmeng Guo, Na Luo, Yueling Bai, Zhenggang Xue, Qingmin Hu, Jiaqiang Xu

Summary: A porous heterostructure WO3-C/In2O3 was designed and prepared for a miniature H2 sensor, which showed higher response value, lower operating temperature, fast response-recovery speed, and low limit of detection.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Signal amplification strategy by chitosan-catechol hydrogel modified paper electrode for electrochemical detection of trace arsenite

Feng Hu, Hui Hu, Yuting Li, Xiaohui Wang, Xiaowen Shi

Summary: Arsenic contamination in water bodies is a significant health risk. This study developed a chitosan-catechol modified electrode for rapid and accurate detection of trace amounts of arsenic. The modified electrode demonstrated good detection capability and resistance to ionic interference, making it suitable for in situ detection.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

A buffering fluorogenic probe for real-time lysosomal pH monitoring

Yantao Zhang, Qian Liu, Tao Tian, Chunhua Xu, Pengli Yang, Lianju Ma, Yi Hou, Hui Zhou, Yongjun Gan

Summary: In this study, a lysosome-targeting buffering fluorogenic probe (Lyso-BFP) was designed and synthesized, demonstrating excellent photostability, pH specificity, and responsiveness to lysosomal acidification in living cells. The performance of Lyso-BFP in pH sensing was attributed to the inhibition of the photo-induced electron transfer process. Lyso-BFP allowed for wash-free imaging and long-term real-time monitoring of lysosome pH changes based on its off-on fluorescence behavior and buffer strategy.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Rational design of α-glucosidase activated near-infrared fluorescent probe and its applications in diagnosis and treatment of diabetes

Wei Cai, Wenbo Sun, Jiayue Wang, Xiaokui Huo, Xudong Cao, Xiangge Tian, Xiaochi Ma, Lei Feng

Summary: In this study, a near-infrared fluorescent probe HCBG was developed for imaging of alpha-GLC. HCBG exhibited excellent selectivity and sensitivity towards alpha-GLC in complex bio-samples, and showed good cell permeability for in situ real-time imaging. Through the high-throughput screening system established by HCBG, a natural alpha-GLC inhibitor was successfully isolated and identified. This study provides a novel fluorescence visualization tool for discovering and exploring the biological functions of diabetes-related gut microbiota, and a high-throughput screening approach for alpha-GLC inhibitor.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Electrochemical immunosensor for the quantification of galectin-3 in saliva

Trey W. Pittman, Xi Zhang, Chamindie Punyadeera, Charles S. Henry

Summary: Heart failure is a growing epidemic and a significant clinical and public health problem. Researchers have developed a portable and affordable diagnostic device for heart failure that can be used at the point-of-care, providing a valid alternative to current diagnostics approaches.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Optical hydrogen peroxide sensor for measurements in flow

Anders O. Tjell, Barbara Jud, Roland Schaller-Ammann, Torsten Mayr

Summary: An optical hydrogen peroxide sensor based on catalytic degradation and the detection of produced oxygen is presented. The sensor offers higher resolution and better sensitivity at lower H2O2 concentrations. By removing O2 from the sample solution, a more sensitive O2 sensor can be used for measurement. The sensor has been successfully applied in a flow-through cell to measure H2O2 concentration in different flow rates.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Engineered vertically-aligned carbon nanotube microarray for self-concentrated SERS detection

Seong Jae Kim, Ji-hun Jeong, Gaabhin Ryu, Yoon Sick Eom, Sanha Kim

Summary: Surface-enhanced Raman spectroscopy (SERS) is a high-sensitivity, label-free detection method with various analytical applications. Researchers have developed a hydrophobic SERS substrate based on engineered carbon nanotube arrays (CNT-SERS) and studied the role of structural design at both micro and nanoscales. The substrate demonstrated controlled self-enrichment capability and enhanced sensitivity, with a significant increase in the SERS signal. The study also proposed a theoretical model and a concentration strategy inspired by plants for analyte deposition on microarrays.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Flexible enzyme-like platform based on a 1-D CeVO4/2-D rGO-MCC heterostructure as sensor for the detection of intracellular superoxide anions

Dan Zhao, Renjun Jiang, Xiaoqiang Liu, Subbiah Alwarappan

Summary: In this study, a novel ternary composite material was constructed by assembling cerium vanadate nanorods on reduced graphene oxide-microcrystalline cellulose nanosheets, and it was used for real-time monitoring of the concentration of superoxide anions in vivo. The ternary composite showed excellent conductivity, large surface area, and abundant active sites, leading to a wider linear range, high sensitivity, low detection limit, and fast response time for superoxide anion detection.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Covalent organic framework enhanced aggregation-induced emission of berberine and the application for detection

Tengfei Wang, Liwen Wang, Guang Wu, Dating Tian

Summary: In this study, a covalent organic framework material TaTp-COF with porous and uniform spheres was successfully prepared via hydrothermal reaction, and it was found to significantly enhance the aggregation-induced emission (AIE) of berberine. The unique emission properties of berberine on TaTp-COF were studied and utilized for the sensitive detection of berberine.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Visualized time-temperature monitoring by triplet-sensitized ratiometric fluorescent nanosensors

Lin Li, Yilei Ding, Lei Xu, Shuoran Chen, Guoliang Dai, Pengju Han, Lixin Lu, Changqing Ye, Yanlin Song

Summary: In this study, a novel TTI based on a ratiometric fluorescent nanosensor is designed, which has the advantages of high accuracy and low cost. Experimental and theoretical investigations confirm its pH responsiveness and demonstrate its good sensitivity and reliability. By monitoring the total volatile basic nitrogen, this TTI can accurately predict food spoilage and can be adaptively modified for different types of food. The TTI based on this nanosensor enables visual monitoring of food quality.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

A fluorescent prodrug to fight drug-resistant lung cancer cells via autophagy-driven ferroptosis

Fangju Chen, Xueting Wang, Wei Chen, Chenwen Shao, Yong Qian

Summary: Lung cancer is the second most common malignant tumor worldwide. Drug resistance in lung cancer leads to treatment failure and recurrence in majority of patients. This study developed a fluorescent prodrug that can be activated in cancer cells to release drugs, and its signal can be tracked by imaging. It shows a unique autophagy-driven ferroptosis effect, indicating its potential for targeting drug-resistant cancer cells.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

ZnO quantum dots sensitized ZnSnO3 for highly formaldehyde sensing at a low temperature

Weichao Li, Qiming Yuan, Zhangcheng Xia, Xiaoxue Ma, Lifang He, Ling Jin, Xiangfeng Chu, Kui Zhang

Summary: This study developed a high-performance gas sensor for formaldehyde detection by modifying ZnSnO3 with ZnO QDs and SnO2 QDs. The modified sensor showed improved sensing response and lower working temperature. The presence of ZnO QDs formed rich heterojunctions, increased surface area, and provided oxygen deficiency for formaldehyde sensing reaction, thus enhancing the sensor performance. This research provides an alternative method to enhance the sensing properties of MOS by QDs modification.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Development of highly sensitive plasmonic biosensors encoded with gold nanoparticles on M13 bacteriophage networks

Joung-Il Moon, Eun Jung Choi, Younju Joung, Jin-Woo Oh, Sang-Woo Joo, Jaebum Choo

Summary: A novel nanoplasmonic substrate was developed for biomedical applications, which showed strong hot spots for detecting biomarkers at low concentrations. The substrate, called AuNPs@M13, was made by immobilizing 60 nm gold nanoparticles onto the surface of an M13 bacteriophage scaffold. It demonstrated higher sensitivity and lower limit of detection compared to commercially available assays.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Single-atom Cu-attached MOFs as peroxide-like enzymes to construct dual-mode immunosensors for detection of breast cancer typing in serum

Ning Li, Ya Zhang, Ying Xu, Xiaofang Liu, Jian Chen, Mei Yang, Changjun Hou, Danqun Huo

Summary: The molecular subtype of breast cancer guides treatment and drug selection. Invasive tests can promote cancer cell metastasis, so the development of high-performance, low-cost diagnostic tools for cancer prognosis is crucial. Liquid biopsy techniques enable noninvasive, real-time, dynamic, multicomponent, quantitative, and long-term observations at the cellular, genetic, and molecular levels. A Cu-Zr metal-organic framework (MOF) nanoenzyme with monatomic Cu attachment has been synthesized and proven to have high catalytic performance. The sensor constructed using this nanoenzyme shows potential for accurate classification of breast cancer serum samples.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Individually-addressable composite microneedle electrode array by mold-and-place method for glucose detection

Jeongmin Kim, Hyemin Kim, Seunghyun Park, Hyeonaug Hong, Yong Jae Kim, Jiyong Lee, Jaeho Kim, Seung-Woo Cho, Wonhyoung Ryu

Summary: This study presents a method to fabricate independently functioning microneedle (MN) electrodes with narrow intervals for high precision electrochemical sensing. The optimized mixture of photocurable polymer and single-wall carbon nanotubes was used to mold single composite MNs, which were then attached to pre-patterned electrodes. Plasma etching and electropolymerization were performed to enhance the electrochemical activity, and Prussian blue and glucose oxidase were electrodeposited on the MNs for glucose detection. The MN electrodes showed good sensitivity and linearity, and the feasibility of glucose detection was demonstrated in an in vivo mouse study.

SENSORS AND ACTUATORS B-CHEMICAL (2024)