4.7 Article

Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations

期刊

RENEWABLE ENERGY
卷 90, 期 -, 页码 386-398

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2016.01.011

关键词

Near wake; Far wake; Wake asymmetry; VAWT; CFD; Dimensional effects

资金

  1. Research Grants Council of Hong Kong Special Administrative Region, China [9041758 (CityU 110012)]

向作者/读者索取更多资源

In this work, the near and far wakes of a low-solidity two-straight-bladed vertical axis wind turbine (VAWT) were, for the first time, investigated with two- and three-dimensional computational fluid dynamics (CFD) simulations. The wake velocity field and turbulence field from 1 to 10 turbine diameters (1D to 10D) downstream were examined. Structured meshes were generated throughout the computational domain for calculation accuracy and efficiency. Both the transition shear stress transport (SST) and the detached eddy simulation (DES) models were used to close the unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The CFD models were validated by particle image velocimetry (PIV) test results from the literature. The regions of the near and far wakes were defined based on the occurrence of the maximum velocity deficit. In the near wake (within 3D), the velocity suffered a drastic deficit of about 85%. In the far wake (beyond 3D), major velocity recovery occurred with the average stream-wise velocity reaching approximately 75% at 10D. The wake asymmetry grew as the downstream distance increased, and the causes behind it were examined. Further, investigation into the dimensional effects of the CFD models, and the blade tip and span vortices was conducted. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据