4.8 Review

On the definition of cyber-physical resilience in power systems

期刊

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
卷 58, 期 -, 页码 1060-1069

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2015.12.193

关键词

Resilience; Power system; Cyber-physical system; Vulnerabilities; Smart grids; Microgrids

向作者/读者索取更多资源

Modern society relies heavily upon complex and widespread electric grids. In recent years, advanced sensors, intelligent automation, communication networks, and information technologies (IT) have been integrated into the electric grid to enhance its performance and efficiency. Integrating these new technologies has resulted in more interconnections and interdependencies between the physical and cyber components of the grid. Natural disasters and man-made perturbations have begun to threaten grid integrity more often. Urban infrastructure networks are highly reliant on the electric grid and consequently, the vulnerability of infrastructure networks to electric grid outages is becoming a major global concern. In order to minimize the economic, social, and political impacts of large-scale power system outages, the grid must be resilient in addition of being robust and reliable. The concept of a power system's cyber-physical resilience centers around maintaining critical functionality of the system backbone in the presence of unexpected extreme disturbances. Resilience is a multidimensional property of the electric grid; it requires managing disturbances originating from physical component failures, cyber component malfunctions, and human attacks. In the electric grid community, there is not a clear and universally accepted definition of cyber-physical resilience. This paper focuses on the definition of resilience for the electric grid and reviews key concepts related to system resilience. This paper aims to advance the field not only by adding cyber-physical resilience concepts to power systems vocabulary, but also by proposing a new way of thinking about grid operation with unexpected extreme disturbances and hazards and leveraging distributed energy resources. The concepts of service availability and quality are not new, but many recognize the need of resilience in maintaining essential services to critical loads, for example to allow home refrigerators to operate for food conservation in the aftermath of a hurricane landfall. By providing a comprehensive definition of power system resilience, this paper paves the way for creating appropriate and effective resilience standards and metrics. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据