4.3 Article

Water and ion permeability of a claudin model: A computational study

期刊

出版社

WILEY
DOI: 10.1002/prot.24969

关键词

ion channels; claudin-2; claudin; water permeation; ion permeation; nanotube; graphene

资金

  1. NIH [U01GM094627-04]

向作者/读者索取更多资源

At present, the three-dimensional structure of the multimeric paracellular claudin pore is unknown. Using extant biophysical data concerning the size of the pore and permeation of water and cations through it, two three-dimensional models of the pore are constructed in silico. Molecular Dynamics (MD) calculations are then performed to compute water and sodium ion permeation fluxes under the influence of applied hydrostatic pressure. Comparison to experiment is made, under the assumption that the hydrostatic pressure applied in the simulations is equivalent to osmotic pressure induced in experimental measurements of water/ion permeability. One model, in which pore-lining charged is distributed evenly over a selectivity filter section 10-16 angstrom in length, is found to be generally consistent with experimental data concerning the dependence of water and ion permeation on channel pore diameter, pore length, and the sign and magnitude of pore lining charge. The molecular coupling mechanism between water and ion flow under conditions where hydrostatic pressure is applied is computationally elucidated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据