4.8 Article

CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1522946113

关键词

bacterial adhesion; mechanical stability; single-molecule force spectroscopy; Gram-positive pili; isopeptide bond

资金

  1. NIH [HL66030, HL61228, AI106072]
  2. National Institute of Dental and Craniofacial Research [DE017382, DE025015]
  3. Marie Curie International Incoming Fellowship [FP7-PEOPLE-2010-COFUND-267149]
  4. Div Of Biological Infrastructure
  5. Direct For Biological Sciences [1252857] Funding Source: National Science Foundation

向作者/读者索取更多资源

Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate similar to 28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据