4.2 Article

Post-euthanasia micro-computed tomography-based strain analysis is able to represent quasi-static in vivo behavior of whole vertebrae

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954411916658679

关键词

Biomechanical testing; analysis; bone biomechanics; bone properties; computed tomography analysis; imaging (biomechanics); spine biomechanics; strain analysis; testing (biomechanics)

资金

  1. Canadian Institute of Health Research [MOP68911]

向作者/读者索取更多资源

Three-dimensional image-based strain measurement in whole bones allows representation of physiological, albeit quasi-static, loading conditions. However, such work to date has been limited to specimens postmortem. The main purpose of this study is to verify the efficacy of deformable image registration of post-euthanasia strain to characterize the in vivo mechanical behavior of rat vertebrae. A micro-computed tomography-compatible custom loading device was used to apply 75N load to a three-level caudal motion segment of a healthy rat. Loaded and unloaded micro-computed tomography scans were acquired in vivo and post-sacrifice. A micro-computed tomography-based deformable image registration algorithm was used to calculate vertebral strains live and post-euthanasia. No significant difference was found in the in vivo strains (-0.011 +/- 0.001) and ex vivo strains (-0.012 +/- 0.001) obtained from the comparisons of loaded and unloaded images (p=0.3). Comparisons between unloaded-unloaded and loaded-loaded scans yielded significantly lower axial strains, representing the error of the method. Qualitatively, high strains were observed adjacent to growth plate regions in evaluating the loaded-unloaded images. Strain patterns in the loaded-loaded and unloaded-unloaded scans were inconsistent as would be expected in representing noise. Overall, live and dead loaded to unloaded comparisons yielded similar strain patterns and magnitudes. Point-wise differences in axial strain fields also supported this observation. This study demonstrated a proof of concept, suggesting that post-euthanasia micro-computed tomography-based strain analysis is able to represent the in vivo quasi-static behavior of rat tail vertebrae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据