4.7 Article

Control of Spin Defects in Wide-Bandgap Semiconductors for Quantum Technologies

期刊

PROCEEDINGS OF THE IEEE
卷 104, 期 10, 页码 2009-2023

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JPROC.2016.2561274

关键词

Diamond; divacancy; microwave; nitrogen-vacancy center; photonics; quantum control; silicon carbide; spin defects; wide-bandgap semiconductors

向作者/读者索取更多资源

Deep-level defects are usually considered undesirable in semiconductors as they typically interfere with the performance of present-day electronic and optoelectronic devices. However, the electronic spin states of certain atomic-scale defects have recently been shown to be promising quantum bits for quantum information processing as well as exquisite nanoscale sensors due to their local environmental sensitivity. In this review, we will discuss recent advances in quantum control protocols of several of these spin defects, the negatively charged nitrogen-vacancy (NV-) center in diamond and a variety of forms of the neutral divacancy (VV0) complex in silicon carbide (SiC). These defects exhibit a spin-triplet ground state that can be controlled through a variety of techniques, several of which allow for room temperature operation. Microwave control has enabled sophisticated decoupling schemes to extend coherence times as well as nanoscale sensing of temperature along with magnetic and electric fields. On the other hand, photonic control of these spin states has provided initial steps toward integration into quantum networks, including entanglement, quantum state teleportation, and all-optical control. Electrical and mechanical control also suggest pathways to develop quantum transducers and quantum hybrid systems. The versatility of the control mechanisms demonstrated should facilitate the development of quantum technologies based on these spin defects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据