4.7 Article

Synthesis of potentially biobased copolyesters based on adipic acid and butanediols: Kinetic study between 1,4-and 2,3-butanediol and their influence on crystallization and thermal properties

期刊

POLYMER
卷 99, 期 -, 页码 204-213

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2016.07.022

关键词

Kinetic study; Reactivity difference; Copolyesters; Transesterification; Structure-properties relationship; Thermal property

资金

  1. European's Union 7th Framework Program for research, technological development and demonstration (SYNPOL Project) [311815]

向作者/读者索取更多资源

Different potentially biobased copolyesters with specific macromolecular architectures are successfully synthesized from renewables diols and diacids, and characterized. The first part focuses on the study of the esterification kinetic of two equimolar systems, 1,4-butanediol (1,4-BDO)/adipic acid (AA) and 2,3-butanediol (2,3-BDO)/AA, with and without titanium isopropoxide (TTIP) as catalyst. The influence of the type of diol (primary vs. secondary hydroxyl groups) and the temperature is also investigated. The esterification rate with 2,3-BDO is slower than with 1,4-BDO leading to higher activation energy. In the second part, poly(1,4-butylene adipate) (PBA) and poly(2,3-butylene adipate) (PB'A) aliphatic polyesters and the corresponding copolyester [poly(1,4-butylene adipate-co-2,3-butylene adipate) (PBB'A)] are synthesized by transesterification in bulk using TTIP. According to our knowledge, the synthesis of PBB'A is reported here for the first time. All synthesized copolymers are characterized by NMR, SEC, FTIR, WAXS, MALDI-TOF, DSC, TGA and specific optical rotation. PBA with a mass-average molar mass around 60,000 g/mol is obtained, whereas molar mass of PB'A and PBB'A are significantly lower. The 2,3-BDO molar content in copolyesters is lower than the initial molar feed content. A linear evolution is observed between 2,3-BDO content and specific optical rotation of the polyesters allowing to use this relation as an additional method to determine PBB'A composition. PBA shows a semi-crystalline behavior, whereas PB'A is amorphous. An increase of the 2,3-BDO content in the copolyester raises the glass transition temperature and reduces the crystallinity. All polyesters exhibit a good thermal stability, exceeding 280 degrees C, with a maximum rate of degradation around 380 degrees C. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据