4.7 Article

Transcriptome analysis of the Taxodium 'Zhongshanshan 405' roots in response to salinity stress

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 100, 期 -, 页码 156-165

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2016.01.009

关键词

Differentially expressed gene; qRT-PCR; Salinity stress; Taxodium; Transcriptome

资金

  1. Agricultural Science and Technology Innovation Project of Jiangsu Province [CX132046]
  2. Key Project in the Provincial Science & Technology Pillar Program (agriculture) of Jiangsu [BE2012343]

向作者/读者索取更多资源

Taxodium 'Zhongshanshan' is an interspecies hybrid of Taxodium distichum and Taxodium mucronatum, and has been widely planted in southeastern China. It has great ecological and economic potential. However, the scant genomic resources in genus Taxodium have greatly hindered further exploration of its underlying salinity-tolerance mechanism. To understand the genetic basis of its salt tolerance, high throughput sequencing of mRNA (RNA-Seq) was used to analyze transcriptome changes of 'Zhongshanshan 405' clone roots treated with NaCl stress. After de novo assembly, 70,312 unigenes were achieved, and 41,059 of them were annotated. 9038 differentially expressed genes (DEGs) were identified among the treatments, and 7959 DEGs were found between salt-stressed roots and control, with 489 up regulated and 570 down-regulated shared by all of the treatments. Genes related to transport, signal transductions as well as undescribed transcripts were among those DEGs in response to salt stress. Gene ontology classification analysis revealed that salt stress-related categories including 'oxidoreductase activity', 'metal ion binding', and 'membrane' were highly enriched among these DEGs. Moreover, the gene expression pattern of 12 unigenes revealed by quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the RNA-Seq data. Our study not only provided the large-scale assessment of transcriptome resources of Taxodium but also guidelines for probing the molecular mechanism underlying 'Zhongshanshan' salt tolerance. (C) 2016 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据