4.7 Article

The Arabidopsis UGT87A2, a stress-inducible family 1 glycosyltransferase, is involved in the plant adaptation to abiotic stresses

期刊

PHYSIOLOGIA PLANTARUM
卷 159, 期 4, 页码 416-432

出版社

WILEY
DOI: 10.1111/ppl.12520

关键词

-

资金

  1. National Natural Science Foundation of China [91217301, 31570299]
  2. Specialized Research Fund for the Doctoral Program of Higher Education of China [20120131110023]
  3. Natural Science Foundation of Shandong Province [ZR2013CQ044]

向作者/读者索取更多资源

Glycosyltransferase (GT) family-1, the biggest GT family in plants, typically participates in modification of small molecules and affects many aspects during plant development. In Arabidopsis thaliana, although some UDP glycosyltransferases (UGTs) of family-1 have been functionally characterized, functions of most the UGTs remain unknown or fragmentary. Here, we report data for the ArabidopsisUGT87A2, a stress-regulated GT. We found that UGT87A2 could be dramatically induced by salinity, osmotic stress, drought and ABA. Overexpression of UGT87A2 (87A2OE) leads to accelerated germination and greening, higher survival rate as well as increased root length against abiotic stresses compared with those of wild-type (WT) plants. In addition, we observed lower water loss rate in the 87A2OE plants due to smaller stomatal apertures. The transgenic plants also showed reduced levels of H2O2 and superoxide under low water status compared with those of WT plants. Consistently, function loss of UGT87A2 in ugt87a2 knockout lines resulted in opposite performances under these conditions. A transcriptome profiling revealed that 121 genes were differentially regulated upon UGT87A2 overexpression, and a large number of stress-induced genes were upregulated in UGT87A2 overexpression plants. Expression of seven genes among them were assessed by quantitative real-time polymerase chain reaction (qRT-PCR), including CPK32, CYP81F2, MYB96, DREB2A, FBS1, PUB23 and RAV2 under both control and stress treatments, and the results greatly validated our transcriptome data. Taken together, our findings support an explicit role of UGT87A2 in adaptation to abiotic stresses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据