4.8 Article

Emergence of Chemical Oscillations from Nanosized Target Patterns

期刊

PHYSICAL REVIEW LETTERS
卷 117, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.117.144501

关键词

-

资金

  1. Fonds de la Recherche Scientifique (F. R. S.-FNRS)
  2. Van-Buuren Foundation

向作者/读者索取更多资源

This work investigates experimentally the mechanism by which chemical oscillations emerge in a nanometric system. We monitor the spatiotemporal dynamics of an oscillating reaction on the surface of a nanosized three-dimensional Pt model catalyst. Using high-resolution field emission techniques, we are able to show that the oscillations are generated by nanoscale chemical target patterns of much shorter characteristic time than the period with which the oscillations occur. Our observations are made for a specific reaction system-NO2 reduction with hydrogen-and represent the first experimental evidence for the presence of target patterns at the nanoscale. They can be seen as an experimental demonstration of reaction-diffusion mechanisms to hold at the nanoscale as they do at the macroscale. These results shed new light on the emergence of complexity through different time and length scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据