4.6 Article

I. Dissociation free energies of drug-receptor systems via non-equilibrium alchemical simulations: a theoretical framework

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 18, 期 22, 页码 14991-15004

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp05519a

关键词

-

资金

  1. ENEA, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development

向作者/读者索取更多资源

In this contribution I critically revise the alchemical reversible approach in the context of the statistical mechanics theory of non-covalent bonding in drug-receptor systems. I show that most of the pitfalls and entanglements for the binding free energy evaluation in computer simulations are rooted in the equilibrium assumption that is implicit in the reversible method. These critical issues can be resolved by using a non-equilibrium variant of the alchemical method in molecular dynamics simulations, relying on the production of many independent trajectories with a continuous dynamical evolution of an externally driven alchemical coordinate, completing the decoupling of the ligand in a matter of a few tens of picoseconds rather than nanoseconds. The absolute binding free energy can be recovered from the annihilation work distributions by applying an unbiased unidirectional free energy estimate, on the assumption that any observed work distribution is given by a mixture of normal distributions, whose components are identical in either direction of the non-equilibrium process, with weights regulated by the Crooks theorem. I finally show that the inherent reliability and accuracy of the unidirectional estimate of the decoupling free energies, based on the production of a few hundreds of non-equilibrium independent sub-nanosecond unrestrained alchemical annihilation processes, is a direct consequence of the funnel-like shape of the free energy surface in molecular recognition. An application of the technique to a real drug-receptor system is presented in the ompanion paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据