4.6 Article

Dielectric relaxations of polyether-based polyurethanes containing ionic liquids as antistatic agents

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 18, 期 4, 页码 2369-2378

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp04090f

关键词

-

资金

  1. Japan Society for the Promotion of Science [21225007]
  2. University of Padova

向作者/读者索取更多资源

Dielectric properties of polyurethanes containing poly(propylene oxide) (PO) and poly(ethylene oxide) (EO) units are discussed, along with the results of direct current (DC) measurements and broadband electrical spectroscopy (BES) studies. The dielectric properties of polyether-containing polyurethanes (PUs) are compared to those of PUs containing 1000 ppm of ionic liquids (ILs) as antistatic agents. The effects of the chemical environment of these ILs, including anion-fixed polymers (PU-AF), cation-fixed polymers (PU-CF), and a simple mixture of IL with the PUs (PU-IL), are compared and discussed on the basis of ion mobility. DC measurements suggest that the charge current is attributed not only to the electrode polarization but also to continuous dielectric relaxation. BES studies elucidate that both fast and slow relaxations are taking place in EO-rich domains in pristine PU and PU-AF. The activation energies of the slow relaxation and of the ionic conductivity are similar, suggesting that the ionic conductivity of these materials is attributed to the ion exchange reaction in EO/ion complexes. In contrast, only fast relaxations are observed in the domains mostly comprised of ion-depleted EO in the PUs containing free'' anions, i.e., PU-CF and PU-IL. This suggests that [Tf2N](-) ligands are weakly interacting with the EO chains and contribute effectively to the ion conduction. Thus, enhanced ionic conductivity is observed in PU-CF and PU-IL, yielding sufficient antistatic effects. Taking into account its long shelf life, arising from the lack of IL bleed-out, PU-CF is concluded to be the most promising candidate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据