4.6 Review

Insulin receptors and wing dimorphism in rice planthoppers

出版社

ROYAL SOC
DOI: 10.1098/rstb.2015.0489

关键词

wing polymorphism; insulin receptors; phenotypic plasticity; planthoppers

类别

资金

  1. National Science Fund for Excellent Young Scholars [31522047]
  2. Zhejiang Provincial Natural Science Fund for Distinguished Young Scholars [LR16C140001]
  3. Fundamental Research Funds for the Central Universities [2015XZZX004-34]

向作者/读者索取更多资源

Wing polymorphism contributes significantly to the success of a wide variety of insects. However, its underlying molecular mechanism is less well understood. The migratory planthopper (BPH), Nilaparvata lugens, is one of the most extensively studied insects for wing polymorphism, due to its natural features of short-and long-winged morphs. Using the BPH as an example, we first surveyed the environmental cues that possibly influence wing developmental plasticity. Second, we explained the molecular basis by which two insulin receptors (InR1 and InR2) act as switches to determine alternative wing morphs in the BPH. This finding provides an additional layer of regulatory mechanism underlying wing polymorphism in insects in addition to juvenile hormones. Further, based on a discrete domain structure between InR1 and InR2 across insect species, we discussed the potential roles by which they might contribute to insect polymorphism. Last, we concluded with future directions of disentangling the insulin signalling pathway in the BPH, which serves as an ideal model for studying wing developmental plasticity in insects. This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据