4.8 Article

Folding and misfolding pathways of G-quadruplex DNA

期刊

NUCLEIC ACIDS RESEARCH
卷 44, 期 22, 页码 10999-11012

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkw970

关键词

-

资金

  1. Inserm [ATIP-Avenir] [R12086GS]
  2. Conseil Regional Aquitaine [20121304005]
  3. EU Seventh Framework Programme [FP7-PEOPLE-2012-CIG-333611]
  4. FP7 Marie Curie Career Integration Grant 'BIOPHYMS'

向作者/读者索取更多资源

G-quadruplexes adopt various folding topologies, but information on their folding pathways remains scarce. Here, we used electrospray mass spectrometry to detect and quantify the specifically bound potassium ions, and circular dichroism to characterize the stacking topology of each ensemble. For human telomeric (hTel) sequences containing the d((GGGTTA)(3)GGG) core, K+ binding affinity and co-operativity strongly depends on the chosen construct. The shortest sequences bind only one K+ at low KCl concentration, and this 2-quartet G-quadruplex is antiparallel. Flanking bases increase the K+ binding cooperativity. To decipher the folding pathways, we investigated the kinetics of K+ binding to telomeric (hybrid) and c-myc (parallel) G-quadruplexes. G-quadruplexes fold via branched pathways with multiple parallel reactions. Up to six states (one ensemble without K+, two ensembles with 1-K+ and three ensembles with 2-K+) are separated based on their formation rates and ion mobility spectrometry. All G-quadruplexes first form long-lived misfolded structures (off-pathway compared to the most stable structures) containing one K+ and two quartets in an antiparallel stacking arrangement. The results highlight the particular ruggedness of G-quadruplex nucleic acid folding landscapes. Mis-folded structures can play important roles for designing artificial G-quadruplex based structures, and for conformational selection by ligands or proteins in a biological context.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据