4.8 Article

Free energy analysis and mechanism of base pair stacking in nicked DNA

期刊

NUCLEIC ACIDS RESEARCH
卷 44, 期 15, 页码 7100-7108

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkw607

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [SFB863]
  2. LRZ (Leibniz Supercomputer Center) [pr48po]
  3. DFG [SFB863]

向作者/读者索取更多资源

The equilibrium of stacked and unstacked base pairs is of central importance for all nucleic acid structure formation processes. The stacking equilibrium is influenced by intramolecular interactions between nucleosides but also by interactions with the solvent. Realistic simulations on nucleic acid structure formation and flexibility require an accurate description of the stacking geometry and stability and its sequence dependence. Free energy simulations have been conducted on a series of double stranded DNA molecules with a central strand break (nick) in one strand. The change in free energy upon unstacking was calculated for all ten possible base pair steps using umbrella sampling along a center-of-mass separation coordinate and including a comparison of different water models. Comparison to experimental studies indicates qualitative agreement of the stability order but a general overestimation of base pair stacking interactions in the simulations. A significant dependence of calculated nucleobase stacking free energies on the employed water model was observed with the tendency of stacking free energies being more accurately reproduced by more complex water models. The simulation studies also suggest a mechanism of stacking/unstacking that involves significant motions perpendicular to the reaction coordinate and indicate that the equilibrium nicked base pair step may slightly differ from regular B-DNA geometry in a sequence-dependent manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据