4.7 Article

Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage

期刊

CHEMICO-BIOLOGICAL INTERACTIONS
卷 242, 期 -, 页码 281-289

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2015.10.011

关键词

Andrographolide; Nano andrographolide; Arsenic; Hepatoprotection

向作者/读者索取更多资源

Chronic exposure to arsenic over a period of time induces toxicity, primarily in liver but gradually in all systems of the body. Andrographolide (AG), a major diterpene lactone of Andrographis paniculata, shows a wide array of physiological functions including hepatoprotection. Therapeutic applications of AG are however seriously constrained because of its insolubility, poor bioavailability, and short plasma half-life. Nanoparticulation of AG is a possible solution to these problems. In the present study we investigated the effectiveness of polylactide co-glycolide (PLGA) nanocapsulated andrographolide (NA) against arsenic induced liver damage in mice. NA of average diameter 65.8 nm and encapsulation efficiency of 64% were prepared. Sodium arsenite at a dose of 40 mg/L supplied via drinking water in mice significantly raised the serum level of liver function markers such as AST, ALT, and ALP, and caused arsenic deposition in liver and ROS generation, though it did not show any lethality up to 30 days of exposure. However, even liver toxicity was not observed when mice were given AG and NA orally at doses up to 100 mg/kg bwt and 20 mg/kg bwt respectively on alternate days for one month. Treatment of non-toxic doses of AG or NA on alternate days along with arsenic significantly decreased the arsenic induced elevation of the serum level of ALT, AST and ALP, and arsenic deposition in liver. AG and NA increased the level of hepatic antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT), and the level of reduced glutathione (GSH). Also, the ROS level was lowered in mice exposed to arsenic but treated with AG or NA. Protective efficiency of NA is about five times more than that of AG. Administration of NA to arsenic-treated mice caused signs of improvement in liver tissue architecture. In conclusion, the results of this study suggest that NA could be beneficial against arsenic-induced liver toxicity. (C) 2015 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Biochemistry & Molecular Biology

Effect of silica-based mesoporous nanomaterials on human blood cells

Sotirios P. Fortis, Anthimia Batrinou, Hara T. Georgatzakou, Ioannis Tsamesidis, Grigorios Alvanidis, Effie G. Papageorgiou, Kontantinos Stamoulis, Dimitrios Gkiliopoulos, Georgia K. Pouroutzidou, Anna Theocharidou, Eleana Kontonasaki, Anastasios G. Kriebardis

Summary: This study evaluated the compatibility of human blood cells with silica-based mesoporous nanomaterials (MSNs) manufactured using the solgel method, with Ca and Ce as doping elements. The results showed that these nanomaterials had no impact on the viability of lymphocytes and monocytes, but reduced the viability of granulocytes. Additionally, the expression of Pselectin in platelets and the level of internal reactive oxygen species increased when exposed to MSNs. The presence of Ce in the MSNs improved their hemocompatibility to some extent. Further research is needed to understand how MSNs may affect different blood components and design safe and effective MSNs for biomedical applications.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Retraction Biochemistry & Molecular Biology

撤稿声明: Agonism of GPR120 prevents ox-LDL-induced attachment of monocytes to endothelial cells (Retraction of Vol 316, art no 108916, 2020)

Tiechao Jiang, Dongli Jiang, Dong You, Lirong Zhang, Long Liu, Qini Zhao

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Article Biochemistry & Molecular Biology

Exosomal derived miR-1246 from hydroquinone-transformed cells drives S phase accumulation arrest by targeting cyclin G2 in TK6 cells

Yuting Chen, Lin Chen, Shiheng Zhu, Hui Yang, Zhongming Ye, Huanhuan Wang, Haipeng Wu, Yao Wu, Qian Sun, Xiaoshan Liu, Hairong Liang, Huanwen Tang

Summary: This study investigates the impact of exosomal derived miR-1246 from HQ-transformed cells on cell-to-cell communication in recipient TK6 cells. The results show that exosomal miR-1246 targets CCNG2, regulating TK6 cell cycle arrest, highlighting its potential as a biomarker for HQ-induced malignant transformation.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Article Biochemistry & Molecular Biology

Gestational exposure to 1-NP induces ferroptosis in placental trophoblasts via CYP1B1/ERK signaling pathway leading to fetal growth restriction

Shuping Yu, Yaming Mu, Kai Wang, Ling Wang, Chunying Wang, Zexin Yang, Yu Liu, Shuxian Li, Meihua Zhang

Summary: Fetal growth restriction (FGR) is a common complication in obstetrics, and its exact cause is unknown. In this study, we constructed 1-NP exposed pregnant mice models and found that 1-NP induced FGR. Additionally, we observed significant ferroptosis in placental trophoblasts from 1-NP exposed mice and human FGR patients. Using in vitro cell models, we demonstrated that 1-NP impaired trophoblast biological function and induced cellular ferroptosis. We also identified the ERK signaling pathway and CYP1B1 as key regulators of 1-NP-induced ferroptosis. This study provides new insights into the aetiology of FGR and the reproductive toxicity of environmental pollutants.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Article Biochemistry & Molecular Biology

Ciprofol is primarily glucuronidated by UGT1A9 and predicted not to cause drug-drug interactions with typical substrates of CYP1A2, CYP2B6, and CYP2C19

Lei Hou, Yingying Zhao, Shiyu Zhao, Xuexia Zhang, Xia Yao, Jianjun Yang, Ziteng Wang, Shuaibing Liu

Summary: This study systematically characterized the UGTs enzymes involved in the formation of M4 and the inhibitory effects of ciprofol and its metabolite M4 on P450s enzymes. In vitro-in vivo extrapolation and PBPK simulations were performed to predict potential drug-drug interactions caused by ciprofol.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Review Biochemistry & Molecular Biology

HIF-1α: A potential therapeutic opportunity in renal fibrosis

Disheng Liu, Lu Wang, Wuhua Ha, Kan Li, Rong Shen, Degui Wang

Summary: Renal fibrosis is a common outcome of renal injuries, characterized by structural destruction and functional decline of the kidneys. Hypoxia induces the activation of HIF-1 alpha, which regulates cellular metabolism, proliferation, apoptosis, and inflammation, contributing to the development of renal fibrosis. Understanding the regulation and cascade reactions mediated by HIF-1 alpha can provide new insights for studying the mechanism of renal fibrosis.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Article Biochemistry & Molecular Biology

Cyclophosphamide reduces gene transcriptional activity and embryo in vitro development by inhibiting NF-κB expression through decreasing AcH4K12

Zhao-Bo Luo, Liu-Hui Yang, Sheng-Zhong Han, Shuang-Yan Chang, Hongye Liu, Zhi-Yong An, Xiu-Li Zhang, Biao-Hu Quan, Xi-Jun Yin, Jin-Dan Kang

Summary: This study demonstrates that cyclophosphamide (CTX) treatment has detrimental effects on oocytes and embryos, leading to DNA damage, apoptosis, and abnormal histone modification. Supplementation with LBH589 can effectively restore the developmental potential of embryos by increasing histone modification levels and restoring protein expression of NF-kappa B, a key regulator of early embryo development.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Article Biochemistry & Molecular Biology

Carveol alleviates osteoarthritis progression by acting on synovial macrophage polarization transformation: An in vitro and in vivo study

Sheng Chen, Hanqing Xu, Yi He, Chen Meng, Yunhui Fan, Yunkun Qu, Yingguang Wang, Wei Zhou, Xiaojian Huang, Hongbo You

Summary: Osteoarthritis is a heterogeneous disease that affects the entire joint. This study found that Carveol can reverse the inflammatory state of macrophages, promote their anti-inflammatory effects, and protect cartilage by activating the NRF2/HO-1/NQO1 pathway and reducing ROS clearance. The results also showed that Carveol can alleviate the pathological changes of osteoarthritis in mice, suggesting its potential therapeutic efficacy.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Article Biochemistry & Molecular Biology

A toxic window study on the hippocampal development of mice offspring exposed to azithromycin at different doses, courses, and time during pregnancy

Liyi Wei, Tingting Wang, Mingcui Luo, Shuai Zhang, Mengxi Lu, Xinli Zhou, Xuelei Cheng, Hui Wang, Dan Xu

Summary: This study found that azithromycin during pregnancy may have toxic effects on fetal hippocampal development, especially in the late pregnancy, high dose, and multi-course situation. The results also suggest that the SOX2/Wnt signaling pathway may be involved in this toxicity.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Review Biochemistry & Molecular Biology

Retinoic acid signaling in development and differentiation commitment and its regulatory topology

Di Wu, Faheem Ahmed Khan, Kejia Zhang, Nuruliarizki Shinta Pandupuspitasari, Windu Negara, Kaifeng Guan, Fei Sun, Chunjie Huang

Summary: Retinoic acid (RA) is a signaling molecule derived from vitamin A/retinol, with implications in various aspects of health and disease. It regulates cell functioning through both transcriptional and non-genomic mechanisms, influencing cell-fate determination, neurogenesis, visual function, inflammatory responses, and gametogenesis commitment.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Review Biochemistry & Molecular Biology

Recalling the reported toxicity assessment of deoxynivalenol, mitigating strategies and its toxicity mechanisms: Comprehensive review

Bilal Murtaza, Lili Wang, Xiaoyu Li, Muhammad Yasir Nawaz, Muhammad Kashif Saleemi, Aisha Khatoon, Xu Yongping

Summary: Mycotoxins in food pose significant concerns for food safety and public health, potentially causing a range of adverse symptoms and cancer development. Deoxynivalenol (DON) is particularly worrisome due to its harm to vital organs. Altered mycotoxins present possible risks to the environment and well-being, necessitating further research into their adverse consequences. Accurately assessing the risk posed by modified mycotoxins remains challenging.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Article Biochemistry & Molecular Biology

Role of parthenolide in paclitaxel-induced oxidative stress injury and impaired reproductive function in rat testicular tissue

Emine Toraman, Buesra Budak, Cemil Bayram, Selma Sezen, Behzad Mokhtare, Ahmet Hacimueftueoglu

Summary: The study suggests that parthenolide (PTL) may have therapeutic effects in treating testicular toxicity caused by paclitaxel (PTX) through reducing oxidative stress and increasing glutathione levels. PTL also promotes the expression of genes involved in reproduction and sperm production.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Correction Biochemistry & Molecular Biology

Aluminum chloride induced splenic lymphocytes apoptosis through NF-kB inhibition (vol 257, pg 94, 2016)

Cuicui Zhuang, Hui Huo, Wanfa Fu, Wanyue Huang, Lulu Han, Miao Song, Yanfei Li

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Article Biochemistry & Molecular Biology

Fecal microbiota transplantation and short-chain fatty acids improve learning and memory in fluorosis mice by BDNF-PI3K/AKT pathway

Taotao Zhao, Jia Lv, Mingyuan Peng, Jiahui Mi, Shaosan Zhang, Jie Liu, Tong Chen, Zilong Sun, Ruiyan Niu

Summary: This study explores the protective effects of fecal microbiota transplantation (FMT) and short-chain fatty acids (SCFAs) supplementation on learning and memory impairment caused by fluoride exposure in mice. The results show that FMT and SCFAs can improve memory deficits and alleviate pathological damages caused by fluoride, possibly by activating the BDNF-PI3K/AKT pathway. Furthermore, the disordered gut microbiome caused by fluoride can be restored through frequent FMT.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)

Article Biochemistry & Molecular Biology

Targeting PKD2 aggravates ferritinophagy-mediated ferroptosis via promoting autophagosome-lysosome fusion and enhances efficacy of carboplatin in lung adenocarcinoma

Yong Liu, Zhaofei Pang, Yadong Wang, Jichang Liu, Guanghui Wang, Jiajun Du

Summary: This study reveals that silencing PKD2 promotes ferroptosis in LUAD by increasing reactive oxygen species, malondialdehyde accumulation, intracellular iron content and cell death. Overexpression of PKD2 prevents autophagic degradation of ferritin and promotes proliferation, migration and invasion of LUAD cells. Moreover, targeting PKD2 enhances the efficacy of carboplatin through ferroptosis and apoptosis in LUAD.

CHEMICO-BIOLOGICAL INTERACTIONS (2024)