4.3 Article

Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia

期刊

NEUROINFORMATICS
卷 14, 期 3, 页码 279-296

出版社

HUMANA PRESS INC
DOI: 10.1007/s12021-015-9292-3

关键词

Magnetic Resonance Imaging; Machine Learning; Feature selection; Alzheimer's Disease; Classification; Multivariate pattern analysis

资金

  1. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  2. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  3. National Institute on Aging
  4. National Institute of Biomedical Imaging and Bioengineering
  5. Canadian Institutes of Health Research
  6. Universidad Carlos III de Madrid
  7. European Unions Seventh Framework Programme for research, technological development and demonstration [600371]
  8. Ministerio de Economia y Competitividad [COFUND2013-40258]
  9. Banco Santander

向作者/读者索取更多资源

We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据