4.7 Article

Pain inhibits pain; human brainstem mechanisms

期刊

NEUROIMAGE
卷 124, 期 -, 页码 54-62

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2015.08.060

关键词

Analgesia; Brainstem; Functional magnetic resonance imaging; Subnucleus reticularis dorsalis; Pain; Diffuse noxious inhibitory control

资金

  1. National Health and Medical Research Council of Australia [1032072]

向作者/读者索取更多资源

Conditioned painmodulation is a powerful analgesic mechanism, occurring when a painful stimulus is inhibited by a second painful stimulus delivered at a different body location. Reduced conditioned painmodulation capacity is associated with the development of some chronic pain conditions and the effectiveness of some analgesic medications. Human lesion studies show that the circuitry responsible for conditioned pain modulation lies within the caudal brainstem, although the precise nuclei in humans remain unknown. We employed brain imaging to determine brainstem sites responsible for conditioned pain modulation in 54 healthy individuals. In all subjects, 8 noxious heat stimuli (test stimuli) were applied to the right side of the mouth and brain activity measured using functional magnetic resonance imaging. This paradigm was then repeated. However, following the fourth noxious stimulus, a separate noxious stimulus, consisting of an intramuscular injection of hypertonic saline into the leg, was delivered (conditioning stimulus). During this test and conditioning stimulus period, 23 subjects displayed conditioned pain modulation analgesia whereas 31 subjects did not. An individual's analgesic ability was not influenced by gender, pain intensity levels of the test or conditioning stimuli or by psychological variables such as pain catastrophizing or fear of pain. Brain images were processed using SPM8 and the brainstem isolated using the SUIT toolbox. Significant increases in signal intensity were determined during each test stimulus and compared between subjects that did and did not display CPM analgesia (p < 0.05, small volume correction). The expression of analgesia was associated with reduction in signal intensity increases during each test stimulus in the presence of the conditioning stimulus in three brainstem regions: the caudalis subdivision of the spinal trigeminal nucleus, i.e., the primary synapse, the region of the subnucleus reticularis dorsalis and in the dorsolateral pons in the region of the parabrachial nucleus. Furthermore, the magnitudes of these signal reductions in all three brainstem regions were significantly correlated to analgesia magnitude. Defining conditioned pain modulation circuitry provides a framework for the future investigations into the neural mechanisms responsible for the maintenance of persistent pain conditions thought to involve altered analgesic circuitry. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据