4.6 Article

Graph regularized and sparse nonnegative matrix factorization with hard constraints for data representation

期刊

NEUROCOMPUTING
卷 173, 期 -, 页码 233-244

出版社

ELSEVIER
DOI: 10.1016/j.neucom.2015.01.103

关键词

Nonnegative matrix factorization; Graph-based regularizer; Sparseness constraints; Label information

资金

  1. National Natural Science Foundation of China [61572244]

向作者/读者索取更多资源

Nonnegative Matrix Factorization (NMF) as a popular technique for finding parts-based, linear representations of nonnegative data has been successfully applied in a wide range of applications. This is because it can provide components with physical meaning and interpretations, which is consistent with the psychological intuition of combining parts to form whole. For practical classification tasks, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results demonstrate that leveraging sparseness can greatly enhance the ability of the learning parts. Motivated by these advances aforementioned, we propose a novel matrix decomposition algorithm, called Graph regularized and Sparse Non-negative Matrix Factorization with hard Constraints (GSNMFC). It attempts to find a compact representation of the data so that further learning tasks can be facilitated. The proposed GSNMFC jointly incorporates a graph regularizer and hard prior label information as well as sparseness constraint as additional conditions to uncover the intrinsic geometrical and discriminative structures of the data space. The corresponding update solutions and the convergence proofs for the optimization problem are also given in detail. Experimental results demonstrate the effectiveness of our algorithm in comparison to the state-of-the-art approaches through a set of evaluations. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据