4.5 Article

The therapeutic potential of sulforaphane on light-induced photoreceptor degeneration through antiapoptosis and antioxidant protection

期刊

NEUROCHEMISTRY INTERNATIONAL
卷 100, 期 -, 页码 52-61

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuint.2016.08.011

关键词

Sulforaphane; Retinal degeneration; Oxidative stress; Thioredoxin; Apoptosis

资金

  1. National Natural Science Foundation of China [31371218, 31300812]
  2. China Postdoctoral Science Foundation [2014M551101]
  3. Natural Science Foundation of Liaoning Province [2014023027]

向作者/读者索取更多资源

Oxidative stress due to excessive light exposure can exacerbate a variety of human retinal diseases by accelerating photoreceptor cell death. The thioredoxin (Trx) system is considered to play a crucial role in reduction/oxidation (redox) regulation of signal transduction and in cell defense against oxidative stresses. Sulforaphane (SF) protects cells from oxidative damage through nuclear factor (erythroidderived 2)-like 2 (Nrf2), which is responsible for multiple detoxification processes, including elevating the expression of Trx. This study sought to demonstrate whether SF increased Trx expression in retinal tissues in vivo and whether it could preserve the photoreceptors from degeneration induced by oxidative stress. Our data clearly showed that pretreatment with SF abated photoreceptor cell loss, in association with increased expression of Nrf2 and Trx, subsequently activating the Ras/Rafl/Erk signaling pathway and decreasing the expression of Baki, Cyt-c release and the activity of caspase-3 in light-induced mouse retinas. These data suggested that the therapeutic potential of SF in retinal degeneration due to oxidative stress might partially involve anti-caspase and antioxidant protection mediated by Trx. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Biochemistry & Molecular Biology

Interleukin-33 has the protective effect on oligodendrocytes against impairment induced by cuprizone intoxication

Hui-Ting Huang, Shun-Fen Tzeng

Summary: Our study demonstrates the role of interleukin-33 (IL-33) in a demyelinating mouse model induced by cuprizone (CPZ), showing that IL-33 can alleviate the reduction of APC+ OLs and the decline of IL-33 levels in the corpus callosum, and promote the expression of myelin basic protein (MBP).

NEUROCHEMISTRY INTERNATIONAL (2024)