4.1 Article

Mesoscale dislocation dynamics modeling of incipient plasticity under nanoindentation

期刊

MATERIALIA
卷 32, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mtla.2023.101956

关键词

Dislocation dynamics; Nanoindentation; Indentation size effect; Source-controlled plasticity

向作者/读者索取更多资源

A mesoscale dislocation dynamics model was used to investigate the mechanical response of Aluminum single crystal under spherical nanoindentation. The model captured the dynamic evolution of dislocations and the corresponding constitutive response of material. The results showed the transition of the governing mechanism for plasticity and provided insights into the underlying deformation mechanism.
A mesoscale dislocation dynamics model which couples three-dimensional dislocation dynamics (DD), and finite element method (FEM) was used to investigate the mechanical response of Aluminum (Al) single crystal under spherical nanoindentation. Together with an atomistically informed nucleation model, the dislocation dynamics model can capture both the dynamic evolution of dislocations under the complex stress state of indentation and the corresponding constitutive response of material. The resulting load-displacement curves and the evolution of dislocation microstructures were analyzed to provide insights into the underlying deformation mechanism for incipient plasticity under nanoindentation. Our model could show the transition of the governing mechanism for plasticity from nucleation-controlled plasticity to pre-existing source-driven plasticity with increasing indenter size, as shown in recent experiments. In addition, it could capture a clear picture on incipient plasticity including the formation of prismatic loops through successive cross-slips of nucleated dislocations, such as rhombus loop and prismatic helical structures, which agrees well with atomistic modeling results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据