4.7 Article

Computational analysis of memory capacity in echo state networks

期刊

NEURAL NETWORKS
卷 83, 期 -, 页码 109-120

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2016.07.012

关键词

Echo-state network; Memory capacity; Spectral properties; Reservoir orthogonalization

资金

  1. Slovak Grant Agency for Science [VEGA 1/0898/14]

向作者/读者索取更多资源

Reservoir computing became very popular due to its potential for efficient design of recurrent neural networks, exploiting the computational properties of the reservoir structure. Various approaches, ranging from appropriate reservoir initialization to its optimization by training have been proposed. In this paper, we extend our previous work and focus on short-term memory capacity, introduced by Jaeger in case of echo state networks. Memory capacity has been previously shown to peak at criticality, when the network switches from a stable regime to an unstable dynamic regime. Using computational experiments with nonlinear ESNs, we systematically analyze the memory capacity from the perspective of several parameters and their relationship, namely the input and reservoir weights scaling, reservoir size and its sparsity. We also derive and test two gradient descent based orthogonalization procedures for recurrent weights matrix, which considerably increase the memory capacity, approaching the upper bound, which is equal to the reservoir size, as proved for linear reservoirs. Orthogonalization procedures are discussed in the context of existing methods and their benefit is assessed. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据