4.6 Article

Time-lag effect of temperature-induced strain for concrete box girder bridges

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s13349-023-00725-1

关键词

Time-lag effect; Temperature load; Box-girder bridge; Strain response; SHM

向作者/读者索取更多资源

This paper summarizes the characteristics and laws of the time-lag effect by mining a large amount of measured data, and explores its mechanism through numerical simulation. Based on the mechanism of the time-lag effect, an elimination method is proposed, providing a stable basis for structural evaluation based on temperature effect.
Temperature load is one of the most common and vital environmental loads for bridge in-service. However, the significant variability of temperature and the time-lag effect severely affects the damage identification and structure evaluation based on temperature response. The time-lag effect refers to the phenomenon that the temperature-induced response lags behind the temperature itself. Through a large amount of measured data mining, this paper summarizes the typical characteristics and general laws of the time-lag effect. Besides, the numerical simulation of the time-lag effect is realized via the finite element method. Furthermore, the spatial and temporal mechanism of the time-lag effect is explored. The extensive numerical simulation results and measured data verification revealed that the temperature change rate is the root cause of the time-lag effect. And the time delay of temperature-induced strain is just the appearance. Finally, based on the mechanism of the time-lag effect, an elimination method is proposed, which adopts the temperature change rate and temperature amplitude as key indexes. With this method, the stable slope of temperature-induced strain can be gained. This provides a solid basis for further structural evaluation based on the temperature effect. The exploration of the time-lag effect mechanism deepens the understanding of the temperature response and provides a new perspective for the structural early warning and assessment based on temperature load.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据