4.7 Article

Efficient separation, adsorption, and recovery of Samarium(III) ions using novel ligand-based composite adsorbent

期刊

Surfaces and Interfaces
卷 41, 期 -, 页码 103276

出版社

Elsevier BV
DOI: 10.1016/j.surfin.2023.103276

关键词

-

向作者/读者索取更多资源

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Chemistry, Physical

Gd-doped bismuth ferrite nanocomposite: A promising candidate for piezocatalytic degradation of organic dyes and pathogenic E. coli

Jhilik Roy, Shubham Roy, Dhananjoy Mondal, Neelanjana Bag, Jaba Roy Chowdhury, Saheli Ghosh, Souravi Bardhan, Rajib Mondal, Ruma Basu, Sukhen Das

Summary: This study presents the synthesis and characterization of a gadolinium-doped bismuth ferrite piezo catalyst for the degradation of carcinogenic organic dyes and eradication of pathogenic bacteria. The piezo catalyst exhibits high polarization and demonstrates exceptional degradation efficiency under soft ultrasound stimulation. It also shows remarkable antibacterial activity and can be easily extracted using a magnetic field, making it a promising candidate for water treatment to prevent secondary pollution.

SURFACES AND INTERFACES (2024)

Article Chemistry, Physical

Plasmon-induced immobilization of xanthene chemosensors toward repurposing as SERS nanotags

Sanggon Kim, Orisson Gomes, Ali Riaz, Mourad Roudjane, Paulo N. Lisboa-Filho, Augusto Batagin-Neto, Younes Messaddeq, Yves De Koninck

Summary: Surface-enhanced Raman spectroscopy (SERS) is a powerful tool in biophysics, bioanalytical chemistry, and biomedicine for monitoring extracellular chemical activity. However, the limited choice of SERS nanotags has hindered its practical application. This study repurposes fluorescent chemosensors as SERS nanotags, using a plasmon-induced reaction to immobilize them onto plasmonic nanostructures. The results demonstrate the successful immobilization and functionality of xanthene-based chemosensors as SERS chemosensors.

SURFACES AND INTERFACES (2024)

Article Chemistry, Physical

Femtosecond laser thinning for resistivity control of tungsten ditelluride thin-films synthesized from sol-gel deposited tungsten oxide

A. Fernandez Garcia, M. Garcia-Lechuga, F. Agullo Rueda, J. Rubio Zuazo, M. Manso Silvan

Summary: In this work, a method for fabricating WTe2 thin-films and controlling their conductivity using femtosecond laser post processing is presented. The synthesis of WTe2 films, characterization of their surface conductivity gradient and the demonstration of conductivity modulation using laser writing are described.

SURFACES AND INTERFACES (2024)

Article Chemistry, Physical

Mitigating supercooling in microencapsulated phase change materials by incorporating compatible polyethylene wax as a nucleating agent

Zhaoqing Kang, Xin Li, Le Zhou, Dan Li, Jiangping Wang

Summary: Microencapsulated phase change materials (MicroPCMs) with polyethylene wax (PE-W) as nucleating agent were prepared using emulsion polymerization. The addition of PE-W significantly reduced the degree of supercooling and increased the enthalpy associated with heterogeneous nucleation in MicroPCMs. The thermal resistance of the MicroPCMs encapsulated by P(MMA-co-AMA) was greatly improved. The MicroPCMs demonstrated exceptional thermal storage and protective characteristics.

SURFACES AND INTERFACES (2024)

Article Chemistry, Physical

Tunable electronic properties and Schottky barrier in Janus Ti3C2FO and TMD heterostructures by interface atomic species and disorder

Chenliang Li, Kezhen Lv, Xiaomin Ding, Liyang Feng, Xiaolong Lv, Decai Ma

Summary: This study investigates the effect of surface termination composition and disorder on the electronic and contact properties of Janus Ti3C2FO materials, and provides new insight into the tuning of contact properties in MXenes/TMD heterostructures.

SURFACES AND INTERFACES (2024)

Article Chemistry, Physical

Chitosan-modified magnesium oxide hybrid nanomaterial: A dual approach for bacterial and cancer cell eradication

Asha Rajiv, Aruna Kapse, Varun Kumar Singh, Manender Singh Chauhan, Aishwary Awasthi, Prabhakar Singh

Summary: Surface modification of inorganic metal oxide nanoparticles with organic biopolymers has endowed these particles with multifunctional properties, making them versatile in the field of nanomedicine. In this study, magnesium oxide and chitosan modified magnesium oxide were synthesized using a green method. The antibacterial and anticancer activities of the synthesized hybrid nanomaterial were attributed to the generated reactive oxygen species. Chitosan modified magnesium oxide hybrid nanomaterial demonstrated appreciable efficacy against bacterial strains and showed significant anticancer potential against human breast cancer cells. Cytotoxicity assays on human fibroblast cells revealed high cell viability rates for both magnesium oxide and chitosan modified magnesium oxide hybrid nanomaterial. These findings suggest that chitosan modified magnesium oxide hybrid nanomaterial has promising applications in the biomedical field.

SURFACES AND INTERFACES (2024)

Article Chemistry, Physical

Simple anion-modified layered double oxides use for controlling Cu valence states for low-temperature CO-SCR

Lin Tao, Jingkai Wang, Qiuju Qin, Bingxian Chu, Pin Gao, Jiaqi Qiu, Qin Li, Xuechi Du, Lihui Dong, Bin Li

Summary: This study focuses on the modification of transition metal catalysts for the selective catalytic reduction of NO by CO. It investigates the effect of different anions on the modification of CO-SCR catalysts. The results show that the use of nitrate ions as a regulator for LDH support leads to a high NO conversion rate, surpassing the use of sulfate ions. The study also highlights the importance of anion modulation in controlling the valence state of loaded copper species. In situ DRIFTS analysis reveals the reaction mechanisms at different temperatures. Overall, this work provides new insights for the valence modulation of copper and the modification of LDH materials in CO-SCR applications.

SURFACES AND INTERFACES (2024)

Article Chemistry, Physical

UiO-66-(OH)2-mediated transition layer for ultra-thin homogeneous defect-free polyamide membrane

Fan Xiao, Ming Cao, Yingbo Chen

Summary: In this study, a continuous and uniform ultra-thin polyamide (PA) membrane, ranging from 10 to 20 nm, was successfully synthesized by utilizing a UiO-66-(OH)2 n-hexane dispersion as a transition layer. The presence of the transition layer improved interface stability and facilitated bidirectional diffusion-contact reaction between the monomers, resulting in superior thinness and uniformity of the PA active layers.

SURFACES AND INTERFACES (2024)

Article Chemistry, Physical

Conducting polymer wrapped SnO2/RGO nanocomposite: An efficient high-performance supercapacitor material

Ashwini B. Rohom, Priyanka U. Londhe, Jeong In Han, Nandu B. Chaure

Summary: This study describes the synthesis and characterization of a ternary nanocomposite electrode for supercapacitors. The electrode, made of tin oxide/reduced graphene oxide wrapped with poly (3,4-ethylenedioxythiophene)-poly-(styrenesulfonate), exhibits excellent electrochemical properties and high cycling stability.

SURFACES AND INTERFACES (2024)

Article Chemistry, Physical

Size-dependent SERS property of red phosphorous in the transition from bulk to nanosheet and its application in immunosensing

Jiayao Zhang, Danni Xue, Huan Liu, Zhao Wei, Chenjie Gu, Shuwen Zeng, Junhui Jiang, Tao Jiang, Xingfei Zhou, Kerong Wu

Summary: This study investigates the size-dependent enhancement of charge transfer resonance in semiconductors by adjusting the size of red phosphorus. The nano-sized red phosphorus achieves a three-fold enhancement in surface enhanced Raman scattering (SERS) intensity compared to nanosheets, making it a potential tool for accurate and efficient cancer marker diagnostics.

SURFACES AND INTERFACES (2024)

Article Chemistry, Physical

Preparation of activated carbon-metal nanoparticle composite materials for the catalytic reduction of organic pollutants

Bouhadjar Boukoussa, Khoukha Rachida Cherdouane, Rajaa Zegai, Adel Mokhtar, Mohammed Hachemaoui, Ismail Issam, Jibran Iqbal, Shashikant P. Patole, Fatima Zohra Zeggai, Rachida Hamacha, Mohamed Abboud

Summary: This work focuses on the preparation of inexpensive composite materials based on activated carbon-containing metallic nanoparticles MNPs (M = Cu, Ag, Fe). Different samples were tested as catalysts for the catalytic reduction of organic pollutants in the presence of NaBH4. The AC-Cu material exhibited good dispersion of CuNPs and showed the highest efficiency among the tested catalysts.

SURFACES AND INTERFACES (2024)

Article Chemistry, Physical

Efficient lubrication of alkylated reduced graphene oxide based on tribochemistry

Changxing Yang, Guxia Wang, Qingyan Bai, Dan Li, Shengwei Guo

Summary: This study designed a simple and efficient graphene-based nanolubricant, which improved the lubrication performance of steel ball friction pairs through a three-step process. It has potential practical applications in the field of lubrication.

SURFACES AND INTERFACES (2024)