4.5 Article

Change in the electrical conductivity of SnO2 crystal from n-type to p-type conductivity

期刊

CHEMICAL PHYSICS
卷 452, 期 -, 页码 71-77

出版社

ELSEVIER
DOI: 10.1016/j.chemphys.2015.03.002

关键词

Tin dioxide (SnO2); Density functional theory; n-type conductivity; p-type conductivity; Crystal structure

向作者/读者索取更多资源

The long-sought fully transparent technology will not come true if the n region of the p-n junction does not get as well developed as its p counterpart. Both experimental and theoretical efforts have to be used to study and discover phenomena occurring at the microscopic level in SnO2 systems. In the present paper, using the DFT + U approach as a main tool and the Vienna ab initio Simulation Package (VASP) we reproduce both intrinsic n-type as well as p-type conductivity in concordance to results observed in real samples of SnO2 material. Initially, an oxygen vacancy (1.56 mol% concentration) combined with a tin-interstitial (1.56 mol% concentration) scheme was used to achieve the n-type electrical conductivity. Later, to attain the p-type conductivity, crystal already possessing n-type conductivity, was codoped with nitrogen (1.56 mol% concentration) and aluminium (12.48 mol% concentration) impurities. Detailed explanation of structural changes endured by the geometry of the crystal as well as the changes in its electrical properties has been obtained. Our experimental data to a very good extent matches with the results found in the DFT + U modelling. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Experimental Observation and Computer Simulation of Al/Sn Substitution in p-Type Aluminum Nitride-Doped Tin Oxide Thin Film

Po-Ming Lee, Yen-Shuo Liu, Luis Villamagua, Arvids Stashans, Manuela Carini, Cheng-Yi Liu

JOURNAL OF PHYSICAL CHEMISTRY C (2016)

Article Nanoscience & Nanotechnology

Doping of SnO2 with H atoms: An alternative way to attain n-type conductivity

Luis Villamagua, Arvids Stashans, Manuela Carini, Frank Maldonado

AIP ADVANCES (2016)

Article Physics, Applied

Analysis of electrical and magnetic properties of zinc oxide: A quantum mechanical study

Freddy Marcillo, Luis Villamagua, Arvids Stashans

INTERNATIONAL JOURNAL OF MODERN PHYSICS B (2017)

Article Nanoscience & Nanotechnology

A quantum chemical analysis of Zn and Sb doping and co-doping in SnO2

Luis Villamagua, Richard Rivera, Darwin Castillo, Manuela Carini

AIP ADVANCES (2017)

Article Chemistry, Physical

DFT modelling of ethanol on BaTiO3 (001) surface

Frank Maldonado, Richard Rivera, Luis Villamagua, Jimmy Maldonado

APPLIED SURFACE SCIENCE (2018)

Article Physics, Multidisciplinary

Doping SnO2 crystal with increasing concentrations of Zn and Sb atoms: a quantum chemical analysis

Luis Villamagua, Frank Maldonado, Darwin Castillo, Manuela Carini

PHYSICA SCRIPTA (2018)

Article Chemistry, Multidisciplinary

Schottky defects in cubic lattice of SrTiO3

Arvids Stashans, Luis Villamagua

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS (2009)

Article Chemistry, Physical

DFT Analysis of the Adsorption of Phenol on the Nonpolar (10(1)over-bar0) ZnO Surface

Frank Maldonado, Luis Villamagua, Richard Rivera

JOURNAL OF PHYSICAL CHEMISTRY C (2019)

Article Physics, Multidisciplinary

First-principles spin-polarized calculations on the adsorption of ethanethiol molecule upon the nonpolar (10(1)over-bar0) ZnO surface

Luis Villamagua, Richard Rivera, Frank Maldonado, Jessica Cuesta, Carlos Tapia, Manuela Carini

Summary: The molecular adsorption of ethanethiol on the nonpolar ZnO surface was studied using density functional theory, with the presence of an oxygen vacancy triggering the appearance of an F-center. The analysis identified three different adsorption patterns, including dissociative and non-dissociative chemisorption with varying adsorption energies, as well as physisorption.

PHYSICA SCRIPTA (2021)

Proceedings Paper Computer Science, Artificial Intelligence

Two-Diode Model Parameter Evaluation from Dark Characteristics of Back-Contact Back-Junction Solar Cells

Luis Chuquimarca, Ximena Acaro, Alfonso Gunsha, Luis Villamagua, David Sanchez

DIGITAL SCIENCE (2019)

Proceedings Paper Computer Science, Artificial Intelligence

Efficiency of Back Contact-Back Junction Solar Cells with Variable Contact in the Emitter

Alfonso Gunsha-Morales, Ximena Acaro, Luis Chuquimarca, Luis Villamagua, David Sanchez

DIGITAL SCIENCE (2019)

Article Nanoscience & Nanotechnology

DFT Study of Intrinsic and Induced p-type Conductivity of ZnO Material

F. Marcillo, L. Villamagua, A. Stashans

JOURNAL OF NANO- AND ELECTRONIC PHYSICS (2017)

Article Mathematics, Applied

Band gap engineering of graphene through quantum confinement and edge distortions

Luis Villamagua, Manuela Carini, Arvids Stashans, Cristian Vacacela Gomez

RICERCHE DI MATEMATICA (2016)

Article Physics, Multidisciplinary

Hydrogen impurity in SrTiO3:: structure, electronic properties and migration

Luis Villamagua, Rafael Barreto, Luis Miguel Procel, Arvids Stashans

PHYSICA SCRIPTA (2007)

Article Chemistry, Physical

Data driven analysis of aromatase inhibitors through machine learning, database mining and library generation

Jameel Ahmed Bhutto, Zhonglin He, Jawayria Najeeb, Sumaira Naeem, Eman A. Mahmoud, Hosam O. Elansary

Summary: Designing novel drugs using data-driven and virtual screening approaches, such as machine learning and data mining, is a popular research topic in the pharmaceutical industry. In this study, ML models were trained using data collected from academic research articles, and molecular descriptors were utilized. The best ML models were selected and optimized to identify potential compounds for aromatase inhibitors. These models accurately predicted the inhibition values of compounds in a database, and new compounds were designed based on the predictions. Overall, this study demonstrates the potential significance of data-driven and virtual screening approaches in pharmaceutical research.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Hydrogen atom/molecule adsorption on 2D metallic porphyrin: A first-principles study

Raphael M. Tromer, Isaac M. Felix, Levi C. Felix, Leonardo D. Machado, Cristiano F. Woellner, Douglas S. Galvao

Summary: This study investigates the adsorption mechanisms of hydrogen atoms and molecules on 2D metallic porphyrins using DFT simulations. The results show that hydrogen atoms are chemisorbed while hydrogen molecules are physisorbed. Vanadium and chromium embedded porphyrins exhibit the highest maximum adsorption energies for hydrogen atoms, while scandium embedded porphyrins exhibit the highest maximum adsorption energy for hydrogen molecules. Furthermore, charge transfer is minimal for physisorption and significant for chemisorption. Uniaxial strain has minimal effects on the adsorption properties of 2D metallic porphyrins.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

How genuine is the quadruple bond in AeF- (Ae = Be-Ba)?

Ankur Kanti Guha

Summary: This study examines the genuineness of a proposed quadruple bond in AeF(-) (Ae = Be-Ba) using electron localization function (ELF). The ELF analysis reveals the presence of a disynaptic Ae-F basin with electron integration much lower than expected for a quadruple bond. These bonds are classified as Charge-Shift bonds due to the excess kinetic energy in the bonding basins.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Rotating single molecule-based devices: Single-spin switching, negative differential electrical and thermoelectric resistance

X. F. Yang, Y. J. Dong, H. L. Yu, X. X. Tao, Y. S. Liu

Summary: This study investigates the spin-polarized transport properties of an iron-complex molecule sandwiched between two ferromagnetic zigzag-edged graphene nanoribbon electrodes. The results show the presence of single-spin switching effect, perfect spin filtering effect, and negative differential electrical and thermoelectric resistance in the molecular device. These findings suggest the potential applications of iron-complex molecular devices in the next-generation spin electric and thermoelectric devices.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

QM:QM studies on the mechanisms of interaction of alkenes with zeolitic Brønsted sites in H-FER

Zhengwei Yan, Tianchu Zhao, Qinghua Ren

Summary: In this study, the chemically accurate hybrid MP2:(PBE + D2) + Delta CCSD(T) method was used to investigate the transition states of alkenes reacting with the Al(2)O(7) Bronsted acid site in H-ferrierite (H-FER). The results showed that the MP2 + Delta CC intrinsic energy barriers were higher than the corresponding PBE + D2 intrinsic energy barriers, and the relative energies of the transition states decreased with the increase of the carbon number. For the reactant of propene, the conversion into 2-propoxide had a lower energy barrier compared to the conversion into 1-propoxide.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

First-principles calculation of structural, electronic, and superconducting properties of PuHx, 6 ≤ x ≤ 10

Yutong Yao, Qihang Liang, Fawei Zheng, Menglei Li

Summary: In this study, first-principle calculations were used to investigate the structural, electronic, and superconducting properties of hydrogen-rich plutonium polyhydrides under high pressures. The results showed that these systems exhibited metallic behavior, with a low superconducting transition temperature. Additionally, it was found that the f electrons in plutonium had a detrimental effect on the superconductivity in these polyhydrides.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Controlling placement of quantum states in phosphorene nanoribbons using ligands

Ryan Lambert, Arthur C. Reber, Turbasu Sengupta, Shiv N. Khanna

Summary: This study demonstrates how the placement of terminal ligands and the deposition of alkali atoms control the band gap energy and placement of band edges in phosphorene nanoribbons. The work function is significantly affected by the induced dipole of the terminal groups, and the band gap can be manipulated by adding alkali atoms on the surface.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Intermolecular interactions between nucleoside, amino acid, and water molecules probed by ultraviolet photodissociation in the gas phase

Daiya Nagai, Akimasa Fujihara

Summary: The effects of intermolecular interactions on the reactivity of hydrogen-bonded clusters of adenosine and tryptophan in the gas phase were investigated using water adsorption and ultraviolet photoexcitation. The results showed that water adsorption weakened the intermolecular interactions between adenosine and tryptophan in the clusters and inhibited the photoinduced glycosidic bond cleavage of adenosine.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Theoretical insights into the interplay between Sb vacancy and Fe on magnetic and optoelectronic properties of Fe-doped antimonene

Xiaoping Han, Maamar Benkraouda, Zhiyuan Wang, Zongsheng Zhang, Noureddine Amrane

Summary: This study investigates the effects of Fe substitution and its complex with Sb vacancy on the magnetic properties and optoelectronic functionalities of antimonene. It is found that Fe substitution induces magnetism and promotes optical absorption, while further incorporation of VSb stabilizes Fe dopant and enhances both magnetism and photoabsorption. This work has implications in developing spintronic and optoelectronic applications.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Ultrafast electron transfer of different vibronic states in flavodoxin

Yifei Zhang, Xi Wang, Na Liu, Faming Lu

Summary: Understanding the ultrafast electron transfer (ET) processes involving various vibronic excitation in biological systems is challenging. This study investigated the excitation dependence of the photo-induced ET dynamics by selecting mutants in flavodoxin with different ET lifetimes. The results showed that increasing excitation energies resulted in higher vibrational excitation in products for the ultrafast ET processes, but no dependence was found for slower ET due to complete vibrational relaxation.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Catalytic performance of metal chloride for dehydrochlorination of trichloroethane

Xiang Ge, Jigang Zhao, Xiangqian Yuan, Haitao Shen, Shiyong Wu

Summary: This study investigated the catalytic splitting of 1,1,2-TCE and found that CsCl showed the best catalytic effect. Characterization results of CO2-TPD and NH3-TPD suggested that alkaline sites were beneficial for the selective generation of VDC.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Nitrogen-Doped Single-Walled Carbon Nanotubes by Floating-Catalyst CVD Process

Theerapol Thurakitseree, Arunothai Rattanachata, Hideki Nakajima, Somruthai Phothiphiphit, Surasak Kuimalee, Pimpun Suknet

Summary: Thin film nitrogen-doped SWCNTs were synthesized using floating-catalyst chemical vapor deposition. The incorporation of low levels of nitrogen into the carbon network resulted in predominance of substitutional and pyridinic nitrogens, changing the electronic structure of the SWCNT film to n-type doping. X-ray absorption spectroscopy revealed the localized structures of carbon and nitrogen bonding environments. The formation of a p-n junction was observed from the I-V characteristic of the N-doped SWCNT heterojunction diode, indicating n-type behavior.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effects of the third body (O and N) on the recombination of molecular nitrogen using quasi-classical trajectory methods

Chaithanya Kondur, Kelly A. Stephani

Summary: This study investigates the complex dynamics involved in the recombination of atomic nitrogen to form molecular nitrogen and explores the impact of a third body on the recombination dynamics. The results show that the recombination probability is highest for collisions with low translational energies and low time lags. Additionally, a novel rate coefficient expression is developed to evaluate low temperature recombination rate coefficients at a lower computational cost.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Elucidating state-specific dynamics of 1La and 1Lb in cyanoindole derivatives using UV/Vis pump IR detection

Bingyao Wang, Zhongneng Zhou, Qin Zhang, Bo Dong, Xiu-Wen Kang, Bei Ding

Summary: In this study, two well-separated excited-state vibrational bands were observed in ethanol for indole derivatives with CN substituted on the six-membered rings (4-7CNIs) using UV/Vis pumped IR detection. A population redistribution process between the L-1(a) and L-1(b) states was observed in 4-7CNIs with a time constant of about 20 ps, driven by excitation-induced solvation relaxation. Only a single peak corresponding to the L-1(b) state was detected in 3CNI where the CN is attached on the five-membered ring.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

First principle study of enhanced CO adsorption on divacancy graphene-supported TM7 (TM = Fe, Co, Ni, Cu, Ag, and Au) clusters

Ruoqi Zhang, Delu Gao, Yixuan Li, Dunyou Wang

Summary: The adsorption of CO on transition metal clusters supported by divacancy graphene has been studied, revealing that the supported clusters exhibit stronger adsorption capacity for CO due to the orbital coupling and induced electrostatic interaction.

CHEMICAL PHYSICS (2024)