4.7 Article

RTP801 mediates transneuronal toxicity in culture via extracellular vesicles

期刊

JOURNAL OF EXTRACELLULAR VESICLES
卷 12, 期 11, 页码 -

出版社

WILEY
DOI: 10.1002/jev2.12378

关键词

6-OHDA; extracellular vesicles; mTOR signalling; neuron; RTP801/REDD1; toxicity

向作者/读者索取更多资源

This study investigates the transfer of RTP801 toxicity via extracellular vesicles (EVs), and its impact on neuronal death and morphology. Results indicate that RTP801-induced toxicity is transferred to neurons via EVs, leading to apoptosis and impairing neuron morphology complexity. Conversely, EVs derived from neurons where RTP801 was silenced show improved arborization in recipient neurons.
Extracellular vesicles (EVs) play a crucial role in intercellular communication, participating in the paracrine trophic support or in the propagation of toxic molecules, including proteins. RTP801 is a stress-regulated protein, whose levels are elevated during neurodegeneration and induce neuron death. However, whether RTP801 toxicity is transferred trans-neuronally via EVs remains unknown. Hence, we overexpressed or silenced RTP801 protein in cultured cortical neurons, isolated their derived EVs (RTP801-EVs or shRTP801-EVs, respectively), and characterized EVs protein content by mass spectrometry (MS). RTP801-EVs toxicity was assessed by treating cultured neurons with these EVs and quantifying apoptotic neuron death and branching. We also tested shRTP801-EVs functionality in the pathologic in vitro model of 6-Hydroxydopamine (6-OHDA). Expression of RTP801 increased the number of EVs released by neurons. Moreover, RTP801 led to a distinct proteomic signature of neuron-derived EVs, containing more pro-apoptotic markers. Hence, we observed that RTP801-induced toxicity was transferred to neurons via EVs, activating apoptosis and impairing neuron morphology complexity. In contrast, shRTP801-EVs were able to increase the arborization in recipient neurons. The 6-OHDA neurotoxin elevated levels of RTP801 in EVs, and 6-OHDA-derived EVs lost the mTOR/Akt signalling activation via Akt and RPS6 downstream effectors. Interestingly, EVs derived from neurons where RTP801 was silenced prior to exposing them to 6-OHDA maintained Akt and RPS6 transactivation in recipient neurons. Taken together, these results suggest that RTP801-induced toxicity is transferred via EVs, and therefore, it could contribute to the progression of neurodegenerative diseases, in which RTP801 is involved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据