4.6 Article

X-ray spectromicroscopy investigation of soft and hard breakdown in RRAM devices

期刊

NANOTECHNOLOGY
卷 27, 期 34, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/27/34/345705

关键词

x-ray spectromicroscopy; titanium dioxide; resistive memory; breakdown

资金

  1. European Community's Seventh Framework Programme (FP7) [312284]
  2. EPSRC [EP/K017829/1]
  3. EU-FP7 RAMP
  4. Engineering and Physical Sciences Research Council [1378627, EP/K017829/1] Funding Source: researchfish
  5. EPSRC [EP/K017829/1] Funding Source: UKRI

向作者/读者索取更多资源

Resistive random access memory (RRAM) is considered an attractive candidate for next generation memory devices due to its competitive scalability, low-power operation and high switching speed. The technology however, still faces several challenges that overall prohibit its industrial translation, such as low yields, large switching variability and ultimately hard breakdown due to long-term operation or high-voltage biasing. The latter issue is of particular interest, because it ultimately leads to device failure. In this work, we have investigated the physicochemical changes that occur within RRAM devices as a consequence of soft and hard breakdown by combining full-field transmission x-ray microscopy with soft x-ray spectroscopic analysis performed on lamella samples. The high lateral resolution of this technique (down to 25 nm) allows the investigation of localized nanometric areas underneath permanent damage of the metal top electrode. Results show that devices after hard breakdown present discontinuity in the active layer, Pt inclusions and the formation of crystalline phases such as rutile, which indicates that the temperature increased locally up to 1000 K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据