4.3 Article

Room Temperature Deposition of Crystalline Nanoporous ZnO Nanostructures for Direct Use as Flexible DSSC Photoanode

期刊

NANOSCALE RESEARCH LETTERS
卷 11, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1186/s11671-016-1437-2

关键词

Zinc oxide (ZnO); Room temperature; Dye-sensitized solar cell; Pulsed laser deposition (PLD); Electron recombination

资金

  1. Center for Integrated Smart Sensors - Ministry of Science, ICT and Future Planning as the Global Frontier Project
  2. Fusion Research Program for Green Technologies through the National Research Foundation of Korea
  3. Outstanding Young Researcher Program through the National Research Foundation of Korea

向作者/读者索取更多资源

A facile approach to fabricate dye-sensitized solar cells (DSSCs) is demonstrated by depositing (001) oriented zinc oxide (ZnO) nanostructures on both glass and flexible substrates at room temperature using pulsed laser deposition. Unique crystallographic characteristics of ZnO combined with highly non-equilibrium state of pulsed laser-induced ablated species enabled highly crystalline ZnO nanostructures without aid of any chemically induced additives or organic/inorganic impurities at room temperature. Film morphology as well as internal surface area is tailored by varying ambient oxygen pressure and deposition time. It is revealed that the optimization of these two experimental factors was essential for achieving structure providing large surface area as well as efficient charge collection. The DSSCs with optimized ZnO photoanodes showed overall efficiencies of 3.89 and 3.4 % on glass and polyethylene naphthalate substrates, respectively, under AM 1.5G light illumination. The high conversion efficiencies are attributed to elongated electron lifetime and enhanced electrolyte diffusion in the high crystalline ZnO nanostructures, verified by intensity-modulated voltage spectroscopy and electrochemical impedance measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据