4.8 Article

Effective PEGylation of gold nanorods

期刊

NANOSCALE
卷 8, 期 13, 页码 7296-7308

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr00607h

关键词

-

资金

  1. German Research Foundation (DFG) via the Cluster of Excellence Centre for Ultrafast Imaging (CUI)

向作者/读者索取更多资源

Standard procedures to coat gold nanorods (AuNR) with poly(ethylene glycol) (PEG)-based ligands are not reliable and high PEG-grafting densities are not achieved. In this work, the ligand exchange of AuNR with PEGMUA, a tailored PEG-ligand bearing a C-10 alkylene spacer, is studied. PEGMUA provides AuNR with very high stability against oxidative etching with cyanide. This etching reaction is utilized to study the ligand exchange in detail. Ligand exchange is faster, less ligand consuming and more reproducible with assisting chloroform extraction. Compared to PEG ligands commonly used, PEGMUA provides much higher colloidal and chemical stability. Further analyses based on NMR-, IR- and UV/Vis-spectroscopy reveal that significantly higher PEG-grafting densities, up to similar to 3 nm(-2), are obtained with PEGMUA. This demonstrates how the molecular structure of the PEG ligand can be used to dramatically improve the ligand exchange and to synthesize PEGylated AuNR with high chemical and colloidal stability and high PEG grafting densities. Such AuNR are especially interesting for applications in nanomedicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Carrier localization in zero-dimensional and one-dimensional CdSe-CdS heterostructures

Yannic U. Staechelin, Michael Deffner, Sonja Krohn, Christian Castillo Delgadillo, Jan Steffen Niehaus, Holger Lange

Summary: By optical and THz pump-probe spectroscopy, we find that only shell-located electrons in quantum rods contribute to photoconductivity, while core-located carriers form immobile excitons that respond to external electrical fields.

JOURNAL OF CHEMICAL PHYSICS (2022)

Article Chemistry, Multidisciplinary

Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging

Yulong Zhuang, Salah Awel, Anton Barty, Richard Bean, Johan Bielecki, Martin Bergemann, Benedikt J. Daurer, Tomas Ekeberg, Armando D. Estillore, Hans Fangohr, Klaus Giewekemeyer, Mark S. Hunter, Mikhail Karnevskiy, Richard A. Kirian, Henry Kirkwood, Yoonhee Kim, Jayanath Koliyadu, Holger Lange, Romain Letrun, Jannik Luebke, Abhishek Mall, Thomas Michelat, Andrew J. Morgan, Nils Roth, Amit K. Samanta, Tokushi Sato, Zhou Shen, Marcin Sikorski, Florian Schulz, John C. H. Spence, Patrik Vagovic, Tamme Wollweber, Lena Worbs, P. Lourdu Xavier, Oleksandr Yefanov, Filipe R. N. C. Maia, Daniel A. Horke, Jochen Kuepper, N. Duane Loh, Adrian P. Mancuso, Henry N. Chapman, Kartik Ayyer

Summary: One of the outstanding problems in X-ray single-particle imaging is the classification of structural heterogeneity. This paper proposes two methods that can account for orientation-induced variation and determine the structural landscape of a sample ensemble. The methods are validated using experimental data and can recover discrete structural classes and continuous deformations.
Article Chemistry, Multidisciplinary

Full-Spectrum InP-Based Quantum Dots with Near-Unity Photoluminescence Quantum Efficiency

Hannes Van Avermaet, Pieter Schiettecatte, Sandra Hinz, Luca Giordano, Fabio Ferrari, Celine Nayral, Fabien Delpech, Janina Maultzsch, Holger Lange, Zeger Hens

Summary: This study presents a synthesis protocol for forming InP-based quantum dots with high quantum efficiency across the full visible spectrum. By introducing specific interfacial treatments and a core/shell/shell structure, the researchers achieved the intended emission color while minimizing line broadening caused by lattice mismatch. The realization of this high quantum efficiency in full-spectrum color conversion will greatly facilitate research into light-matter interaction.

ACS NANO (2022)

Article Chemistry, Physical

Three-step colloidal gelation revealed by time-resolved x-ray photon correlation spectroscopy

Avni Jain, Florian Schulz, Francesco Dallari, Verena Markmann, Fabian Westermeier, Yugang Zhang, Gerhard Gruebel, Felix Lehmkuehler

Summary: In this study, the gelation of PEGylated gold nanoparticles dispersed in a glycerol-water mixture was investigated in situ by x-ray photon correlation spectroscopy. The results reveal a three-step gelation process, including the simultaneous changes of structure and dynamics, establishment of gel network structure, and aging after the arrest of particle motion. Additionally, the gelation process is characterized by stress release.

JOURNAL OF CHEMICAL PHYSICS (2022)

Article Materials Science, Multidisciplinary

Optimizing Interparticle Gaps in Large-Scale Gold Nanoparticle Supercrystals for Flexible Light-Matter Coupling

Florian Schulz, Holger Lange

Summary: Periodic arrangements of plasmonic nanoparticles in supercrystals exhibit strong light-matter interaction. This study analyzes experimental data to investigate the reproducibility and tunability of gap sizes in relation to the particle diameter and molecular weight of stabilizing ligands. Different behaviors of polystyrene-based ligands are observed depending on their molecular weight, leading to important consequences for the correlation between nanoparticle diameter and resulting gaps in supercrystals. An alternative volume-based approach is proposed for predicting gap sizes in larger nanoparticles, which provides robust guidelines for achieving gaps below 5 nm for enhanced light-matter coupling.

ADVANCED OPTICAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Bioinspired Polyethylene Glycol Coatings for Reduced Nanoparticle-Protein Interactions

Jhoan Toro-Mendoza, Lucia Maio, Marta Gallego, Ferdinand Otto, Florian Schulz, Wolfgang J. Parak, Carlos Sanchez-Cano, Ivan Coluzza

Summary: Nanoparticles and other nano-materials have potential as nanodrugs or nanomedical devices, but their therapeutic response can be significantly affected by protein adsorption. By combining experimental and computational approaches, we have developed nanoparticles with polyethylene glycol (PEG) coatings that mimic the surface charge distribution of proteins in blood, showing low aggregation under normal blood conditions.

ACS NANO (2023)

Article Chemistry, Physical

Defined Coadsorption of Prostate Cancer Targeting Ligands and PEG on Gold Nanoparticles for Significantly Reduced Protein Adsorption in Cell Media

Finn Hoeeg, Jennifer Schulz, Sebastian Graf, Dina Salah, Sharah Chandralingam, Wolfgang Maison, Wolfgang J. Parak, Florian Schulz

Summary: This study investigates the surface chemistry of gold nanoparticles using gel electrophoresis. It is found that coadsorption of PEG ligands significantly reduces protein adsorption and matrix effects of cell media, improving the colloidal stability of nanoparticles. The controlled adsorption of PEG ligands with different molecular weights allows for the disentanglement of particle charge and hydrodynamic diameter effects.

JOURNAL OF PHYSICAL CHEMISTRY C (2022)

Article Chemistry, Physical

Theory of radial oscillations in metal nanoparticles driven by optically induced electron density gradients

Robert Salzwedel, Andreas Knorr, Dominik Hoeing, Holger Lange, Malte Selig

Summary: We present a microscopic approach to understand the beginning of radial oscillation in silver nanoparticles. Using the Heisenberg equation of motion framework, we demonstrate that the coupled dynamics of coherent electron occupation and coherent phonon amplitude induce periodic size oscillations in the nanoparticle. Our results suggest a more direct coupling mechanism between field intensity and coherent phonons, which triggers size oscillations via optically induced electron density gradient. This mechanism is more efficient than the incoherent heating process commonly discussed in literature and provides a better explanation for the early onset of oscillations observed in recent experiments.

JOURNAL OF CHEMICAL PHYSICS (2023)

Article Chemistry, Multidisciplinary

Time-Resolved Single-Particle X-ray Scattering Reveals Electron-Density Gradients As Coherent Plasmonic-Nanoparticle-Oscillation Source

Dominik Hoeing, Robert Salzwedel, Lena Worbs, Yulong Zhuang, Amit K. K. Samanta, Jannik Lubke, Armando D. D. Estillore, Karol Dlugolecki, Christopher Passow, Benjamin Erk, Nagitha Ekanayake, Daniel Ramm, Jonathan Correa, Christina C. Papadopoulou, Atia Tul Noor, Florian Schulz, Malte Selig, Andreas Knorr, Kartik Ayyer, Jochen Kupper, Holger Lange

Summary: Currently, the dynamics of optically excited plasmonic nanoparticles are explained as a series of scattering events caused by nanoparticle breathing oscillations initiated by statistical heat transfer from thermalized electrons to the lattice. However, a phase mismatch between theory and experiments suggests an additional excitation mechanism. Through optical transient absorption spectroscopy and time-resolved single-particle X-ray diffractive imaging, we found that optically induced electron density gradients are the initial driving source for breathing oscillation and confirmed the need for an additional excitation mechanism for thermal expansion. Our new model reproduces all experimental observations.

NANO LETTERS (2023)

Review Chemistry, Multidisciplinary

Local Environments Created by the Ligand Coating of Nanoparticles and Their Implications for Sensing and Surface Reactions

Florian Schulz, Jonas Huehn, Marco Werner, Dominik Huehn, Julia Kvelstad, Ulrich Koert, Nicole Wutke, Markus Klapper, Michael Froeba, Vladimir Baulin, Wolfgang J. J. Parak

Summary: The ligand shell of colloidal nanoparticles serves various purposes, including providing colloidal stability and creating a local environment different from the bulk solvent. This local environment has profound implications for sensing applications and can modulate specific responses.

ACCOUNTS OF CHEMICAL RESEARCH (2023)

Article Optics

Impact of pump beam spot size on semiconductor carrier dynamics in optical-pump-terahertz-probe spectroscopy

Yannic U. Staechelin, Tobias Kroh, Franz X. Kaertner, Holger Lange

Summary: Optical-pump-terahertz-probe (OPTP) experiments are commonly used to study the behaviors of excited carriers in semiconductors. However, the size difference between the probe beam and the pump beam can cause distortions in the sample response and uncertainties in calculated conductivities and models. By investigating the influence of pump beam spot size and evaluating model calculations, we show the impact of this effect on the acquired data and provide guidelines for optimal experimental configurations.

JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS (2023)

Article Chemistry, Physical

Plasmonic bimetallic two-dimensional supercrystals for H2 generation

Matias Herran, Sabrina Juergensen, Moritz Kessens, Dominik Hoeing, Andrea Koeppen, Ana Sousa-Castillo, Wolfgang J. Parak, Holger Lange, Stephanie Reich, Florian Schulz, Emiliano Cortes

Summary: The researchers present a two-dimensional bimetallic catalyst for efficient hydrogen generation under visible light illumination and solar irradiance by incorporating platinum nanoparticles into a well-defined supercrystal of gold nanoparticles. They observe a correlation between the intensity of the electric field in the hotspots and the boosted catalytic activity of platinum nanoparticles, while identifying a minor role of heat and gold-to-platinum charge transfer in the enhancement.

NATURE CATALYSIS (2023)

Article Chemistry, Multidisciplinary

Exploring the degradation of silver nanowire networks under thermal stress by coupling in situ X-ray diffraction and electrical resistance measurements

Laetitia Bardet, Herve Roussel, Stefano Saroglia, Masoud Akbari, David Munoz-Rojas, Carmen Jimenez, Aurore Denneulin, Daniel Bellet

Summary: The thermal instability of silver nanowires leads to increased electrical resistance in AgNW networks. Understanding the relationship between structural and electrical properties of AgNW networks is crucial for their integration as transparent electrodes in flexible optoelectronics. In situ X-ray diffraction measurements were used to study the crystallographic evolution of Ag-specific Bragg peaks during thermal ramping, revealing differences in thermal and structural transitions between bare and SnO2-coated AgNW networks.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Recording physiological and pathological cortical activity and exogenous electric fields using graphene microtransistor arrays in vitro

Nathalia Cancino-Fuentes, Arnau Manasanch, Joana Covelo, Alex Suarez-Perez, Enrique Fernandez, Stratis Matsoukis, Christoph Guger, Xavi Illa, Anton Guimera-Brunet, Maria V. Sanchez-Vives

Summary: This study provides a comprehensive characterization of graphene-based solution-gated field-effect transistors (gSGFETs) for brain recordings, highlighting their potential clinical applications.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Metal oxide-embedded carbon-based materials for polymer solar cells and X-ray detectors

Sikandar Aftab, Hailiang Liu, Dhanasekaran Vikraman, Sajjad Hussain, Jungwon Kang, Abdullah A. Al-Kahtani

Summary: This study examines the effects of hybrid nanoparticles made of NiO@rGO and NiO@CNT on the active layers of polymer solar cells and X-ray photodetectors. The findings show that these hybrid nanoparticles can enhance the charge carrier capacities and exciton dissociation properties of the active layers. Among the tested configurations, the NiO@CNT device demonstrates superior performance in converting sunlight into electricity, and achieves the best sensitivity for X-ray detection.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury

Hyo Jung Shin, Seung Gyu Choi, Fengrui Qu, Min-Hee Yi, Choong-Hyun Lee, Sang Ryong Kim, Hyeong-Geug Kim, Jaewon Beom, Yoonyoung Yi, Do Kyung Kim, Eun-Hye Joe, Hee-Jung Song, Yonghyun Kim, Dong Woon Kim

Summary: This study investigates the role of SOX9 in reactive astrocytes following ischemic brain damage using a PLGA nanoparticle plasmid delivery system. The results demonstrate that PLGA nanoparticles can reduce ischemia-induced neurological deficits and infarct volume, providing a potential opportunity for stroke treatment.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Spontaneous unbinding transition of nanoparticles adsorbing onto biomembranes: interplay of electrostatics and crowding

Anurag Chaudhury, Koushik Debnath, Nikhil R. Jana, Jaydeep K. Basu

Summary: The study investigates the interaction between nanoparticles and cell membranes, and identifies key parameters, including charge, crowding, and membrane fluidity, that determine the adsorbed concentration and unbinding transition of nanoparticles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab

Sina Sadeghi, Fazel Bateni, Taekhoon Kim, Dae Yong Son, Jeffrey A. Bennett, Negin Orouji, Venkat S. Punati, Christine Stark, Teagan D. Cerra, Rami Awad, Fernando Delgado-Licona, Jinge Xu, Nikolai Mukhin, Hannah Dickerson, Kristofer G. Reyes, Milad Abolhasani

Summary: In this study, an autonomous approach for the development of lead-free metal halide perovskite nanocrystals is presented, which integrates a modular microfluidic platform with machine learning-assisted synthesis modeling. This approach enables rapid and optimized synthesis of copper-based lead-free nanocrystals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

In situ growth of a redox-active metal-organic framework on electrospun carbon nanofibers as a free-standing electrode for flexible energy storage devices

Zahir Abbas, Nissar Hussain, Surender Kumar, Shaikh M. Mobin

Summary: The rational construction of free-standing and flexible electrodes for electrochemical energy storage devices is an emerging research focus. In this study, a redox-active metal-organic framework (MOF) was prepared on carbon nanofibers using an in situ approach, resulting in a flexible electrode with high redox-active behavior and unique properties such as high flexibility and lightweight. The prepared electrode showed excellent cyclic retention and rate capability in supercapacitor applications. Additionally, it could be used as a freestanding electrode in flexible devices at different bending angles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

A NIR-driven green affording-oxygen microrobot for targeted photodynamic therapy of tumors

Lishan Zhang, Xiaoting Zhang, Hui Ran, Ze Chen, Yicheng Ye, Jiamiao Jiang, Ziwei Hu, Miral Azechi, Fei Peng, Hao Tian, Zhili Xu, Yingfeng Tu

Summary: Photodynamic therapy (PDT) is a promising local treatment modality in cancer therapy, but its therapeutic efficacy is restricted by ineffective delivery of photosensitizers and tumor hypoxia. In this study, a phototactic Chlorella-based near-infrared (NIR) driven green affording-oxygen microrobot system was developed for enhanced PDT. The system exhibited desirable phototaxis and continuous oxygen generation, leading to the inhibition of tumor growth in mice. This study demonstrates the potential of using a light-driven green affording-oxygen microrobot to enhance photodynamic therapy.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Novel hollow MoS2@C@Cu2S heterostructures for high zinc storage performance

Yujin Li, Jing Xu, Xinqi Luo, Futing Wang, Zhong Dong, Ke-Jing Huang, Chengjie Hu, Mengyi Hou, Ren Cai

Summary: In this study, hollow heterostructured materials were constructed using an innovative template-engaged method as cathodes for zinc-ion batteries. The materials exhibited fast Zn2+ transport channels, improved electrical conductivity, and controlled volume expansion during cycling. The designed structure allowed for an admirable reversible capacity and high coulombic efficiency.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Mechanistic elucidation of the catalytic activity of silver nanoclusters: exploring the predominant role of electrostatic surface

Paritosh Mahato, Shashi Shekhar, Rahul Yadav, Saptarshi Mukherjee

Summary: This study comprehensively elucidates the role of the core and electrostatic surface of metal nanoclusters in catalytic reduction reactions. The electrostatic surface dramatically modulates the reactivity of metal nanoclusters.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Facile green synthesis of wasted hop-based zinc oxide nanozymes as peroxidase-like catalysts for colorimetric analysis

Pei Liu, Mengdi Liang, Zhengwei Liu, Haiyu Long, Han Cheng, Jiahe Su, Zhongbiao Tan, Xuewen He, Min Sun, Xiangqian Li, Shuai He

Summary: This study demonstrates a simple and environmentally-friendly method for the synthesis of zinc oxide nanozymes (ZnO NZs) using wasted hop extract (WHE). The WHE-ZnO NZs exhibit exceptional peroxidase-like activity and serve as effective catalysts for the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). In addition, a straightforward colorimetric technique for detecting both H2O2 and glucose was developed using the WHE-ZnO NZs as peroxidase-like catalysts.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Impact of channel nanostructures of porous carbon particles on their catalytic performance

Hyunkyu Oh, Young Jun Lee, Eun Ji Kim, Jinseok Park, Hee-Eun Kim, Hyunsoo Lee, Hyunjoo Lee, Bumjoon J. Kim

Summary: Mesoporous carbon particles have unique structural properties that make them suitable as support materials for catalytic applications. This study investigates the impact of channel nanostructures on the catalytic activity of porous carbon particles (PCPs) by fabricating PCPs with controlled channel exposure on the carbon surface. The results show that PCPs with highly open channel nanostructures exhibit significantly higher catalytic activity compared to those with closed channel nanostructures.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Fabrication of a tough, long-lasting adhesive hydrogel patch via the synergy of interfacial entanglement and adhesion group densification

Yunjie Lu, Zhaohui Li, Zewei Li, Shihao Zhou, Ning Zhang, Jianming Zhang, Lu Zong

Summary: A tough, long-lasting adhesive and highly conductive nanocomposite hydrogel (PACPH) was fabricated via the synergy of interfacial entanglement and adhesion group densification. PACPH possesses excellent mechanical properties, interfacial adhesion strength, and conductivity, making it a promising material for long-term monitoring of human activities and electrocardiogram signals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Strongly coupled plasmonic metal nanoparticles with reversible pH-responsiveness and highly reproducible SERS in solution

Zichao Wei, Audrey Vandergriff, Chung-Hao Liu, Maham Liaqat, Mu-Ping Nieh, Yu Lei, Jie He

Summary: We have developed a simple method to prepare polymer-grafted plasmonic metal nanoparticles with pH-responsive surface-enhanced Raman scattering. By using pH-responsive polymers as ligands, the aggregation of nanoparticles can be controlled, leading to enhanced SERS. The pH-responsive polymer-grafted nanoparticles show high reproducibility and sensitivity in solution, providing a novel approach for SERS without the need for sample pre-concentration.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Unlocking the full potential of citric acid-synthesized carbon dots as a supercapacitor electrode material via surface functionalization

Melis Ozge Alas Colak, Ahmet Gungor, Merve Buldu Akturk, Emre Erdem, Rukan Genc

Summary: This research investigates the effect of functionalizing carbon dots with hydroxyl polymers on their performance as electrode materials in a supercapacitor. The results show that the functionalized carbon dots exhibit excellent electrochemical performance and improved stability.

NANOSCALE (2024)