4.8 Article

Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid

期刊

NANOSCALE
卷 8, 期 29, 页码 13997-14003

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr01351a

关键词

-

资金

  1. Siemens AG
  2. DFG (Deutsche Forschungsgemeinschaft) [KO 576/28-1]
  3. European Research Council through the ERC - Starting Grant THEOFUN [259608]

向作者/读者索取更多资源

The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(III) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Valence energy correction for electron reactive force field

Samuel Bertolini, Timo Jacob

Summary: The study modified the eReaxFF method to allow electrons to modify valence energy, improving the description of the reaction path. By adjusting the methodology when electrons are present, the overall accuracy of the force field and the depiction of angles within molecules were enhanced.

JOURNAL OF COMPUTATIONAL CHEMISTRY (2022)

Article Chemistry, Physical

Simulations of the Electrochemical Oxidation of Pt Nanoparticles ofVarious Shapes

Bjoern Kirchhoff, Christoph Jung, Hannes Jonsson, Donato Fantauzzi, Timo Jacob

Summary: The activity and stability of platinum nanoparticles are influenced by their shape. In this study, a simulation method was used to investigate the oxidation process and behavior of platinum nanoparticles with different shapes, and a relationship between oxidation behavior and surface structure was established.

JOURNAL OF PHYSICAL CHEMISTRY C (2022)

Article Chemistry, Physical

Potential-Dependent Pt(111)/Water Interface: Tackling the Challenge of a Consistent Treatment of Electrochemical Interfaces

Laura Braunwarth, Christoph Jung, Timo Jacob

Summary: This study uses molecular dynamics simulations to investigate the structure and dynamics of electrode-electrolyte interfaces, focusing on the Pt(111)/water interface. The results reveal changes in water molecule orientation and intermolecular ordering, challenging previous assumptions about their correlation to free charge density. This work contributes to our understanding of electric double layers and electrochemical processes.

CHEMPHYSCHEM (2023)

Article Chemistry, Physical

In-Liquid Plasma Modified Nickel Foam: NiOOH/NiFeOOH Active Site Multiplication for Electrocatalytic Alcohol, Aldehyde, and Water Oxidation

Jan Niklas Hausmann, Pramod Menezes, Gonela Vijaykumar, Konstantin Laun, Thomas Diemant, Ingo Zebger, Timo Jacob, Matthias Driess, Prashanth W. Menezes

Summary: This article reports a new method of growing hierarchical nanostructures on nickel foam, and successfully doped iron element for oxidation reactions and oxygen evolution reaction. The results show that iron doping is more suitable for oxidation reactions, which can generate higher current density and Faradaic efficiency. In the oxygen evolution reaction, the iron-doped nickel foam electrode can achieve the current density required by industry and maintain stable performance. This article reveals the effects of iron doping and its impact on the reaction mechanism.

ADVANCED ENERGY MATERIALS (2022)

Editorial Material Electrochemistry

Initial Stages of Sodium Deposition onto Au(111) from [MPPip][TFSI]: An in-situ STM Study for Sodium-Ion Battery Electrolytes

Maren-Kathrin Heubach, Fabian M. Schuett, Ludwig A. Kibler, Areeg Abdelrahman, Timo Jacob

Summary: The Front Cover of this issue features the research conducted by Professor Timo Jacob's group at Ulm University, showcasing the in-situ scanning tunnelling microscopy study of sodium deposition on the Au(111) single crystal surface.

CHEMELECTROCHEM (2022)

Article Chemistry, Multidisciplinary

Combining Deep Eutectic Solvents with TEMPO-based Polymer Electrodes: Influence of Molar Ratio on Electrode Performance

Matthias Uhl, Tanja Geng, Philipp A. Schuster, Benjamin W. Schick, Matthias Kruck, Alexander Fuoss, Alexander J. C. Kuehne, Timo Jacob

Summary: By replacing the electrolyte with a deep eutectic solvent and using a polymer as the electrode, an all-organic battery can be achieved. The combination of different solvents and salt concentrations affects the stability and viscosity of the battery. The eutectic mixture with a 1:6 ratio offers the best balance between stability and viscosity.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

Nanoporous Au Formation on Au Substrates via High Voltage Electrolysis

Evelyn Artmann, Lukas Forschner, Konstantin M. Schuettler, Mohammad Al-Shakran, Timo Jacob, Albert K. Engstfeld

Summary: Researchers propose a simple method for the preparation of nanoporous gold films, which can be achieved by high voltage electrolysis or anodic contact glow discharge electrolysis. The structural properties of the resulting films can be controlled by adjusting the electrolysis conditions and the reduction reaction conditions.

CHEMPHYSCHEM (2023)

Article Chemistry, Multidisciplinary

Development of a Mg/O ReaxFF Potential to describe the Passivation Processes in Magnesium-Ion Batteries

Florian Fiesinger, Daniel Gaissmaier, Matthias van den Borg, Julian Bessner, Adri C. T. van Duin, Timo Jacob

Summary: One of the key challenges in the development of magnesium-ion batteries (MIB) is the formation of a passivating boundary layer at the magnesium anode. A Mg/O ReaxFF parameter set was developed to accurately model the degradation process of the magnesium anode by O-2 impurities. It was found that O-2 immediately dissociates upon first contact with the magnesium anode, leading to high temperatures and further oxidation. The trained force field can be used to study reactions in Mg-air batteries and the oxidation of magnesium metal in general.

CHEMSUSCHEM (2023)

Article Electrochemistry

Designing a reference electrode-An approach to fabricate laser perforated reference electrodes for lithium-ion batteries

Daniel Rutz, Ingolf Bauer, Felix Brauchle, Timo Jacob

Summary: In this study, user-defined reference electrodes based on LFP were fabricated using an ultrashort pulse laser. The results showed that these electrodes have minimal impact on the cell capacity and can provide reproducible voltage output at low to moderate C-rates. They also do not affect the cell expansion during cycling.

ELECTROCHIMICA ACTA (2023)

Article Chemistry, Multidisciplinary

An Atomistic View of Platinum Cluster Growth on Pristine and Defective Graphene Supports

Julia Bord, Bjoern Kirchhoff, Matthias Baldofski, Christoph Jung, Timo Jacob

Summary: Density functional theory (DFT) is utilized to investigate the electronic structure of platinum clusters on different graphene substrates. The size and defects of both the clusters and the graphene substrates are examined. The results reveal that larger vacancies lead to stronger binding of Pt clusters, while defect-free graphene shows more exothermic formation energy with increasing cluster size. Oxygen-free graphene supports are crucial for successful attachment of Pt, and cluster stability depends on the number and ratio of Pt-C, Pt-Pt, and Pt-O bonds rather than the cluster geometry.
Article Chemistry, Physical

Activation of nickel foam through in-liquid plasma-induced phosphorus incorporation for efficient quasi-industrial water oxidation and selective oxygenation of organics

Hongyuan Yang, Pramod V. Menezes, Guoliang Dai, Gonela Vijaykumar, Ziliang Chen, Mohammad Al-Shakran, Timo Jacob, Matthias Driess, Prashanth W. Menezes

Summary: Developing bifunctional electrodes for oxidation catalysis is highly desirable for hydrogen and value-added chemicals production. Here, we directly activate the nickel foam through the incorporation of elemental P (P-NF) using a facile, controllable, and ultrafast in-liquid plasma electrolysis approach. The practical bifunctionality of P-NF is additionally verified with selective oxygenation of organics forming value-added chemicals.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Chemistry, Physical

Structure and Optical Properties of Polymeric Carbon Nitrides from Atomistic Simulations

Changbin Im, Bjorn Kirchhoff, Igor Krivtsov, Dariusz Mitoraj, Radim Beranek, Timo Jacob

Summary: Computational investigation of PCN materials can lead to better understanding and optimization strategies. Thermochemical calculations predict stable structural motifs and show that condensed PCN domains in a less condensed framework can have desirable optical properties.

CHEMISTRY OF MATERIALS (2023)

Article Chemistry, Physical

Electric Potential Distribution Inside the Electrolyte during High Voltage Electrolysis

Lukas Forschner, Evelyn Artmann, Timo Jacob, Albert K. Engstfeld

Summary: Applying an external potential difference between two electrodes leads to a voltage drop in an ion conducting electrolyte. The electrolyte potential is relevant in electrochemistry and various applications such as bipolar electrochemistry, ohmic microscopy, or contact glow discharge electrolysis. This study focuses on the electrolyte potential during high voltage electrolysis in an electrolysis cell using reversible hydrogen electrodes as reference electrodes. A computational COMSOL model is used to support the experimental findings, and the influence of cell geometry on the electrolyte potentials is evaluated. The amount of oxide formed during high voltage electrolysis is found to be related to the current rather than the applied voltage, based on the knowledge of potential distribution.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Review Chemistry, Physical

In silico characterization of nanoparticles

Bjoern Kirchhoff, Christoph Jung, Daniel Gaissmaier, Laura Braunwarth, Donato Fantauzzi, Timo Jacob

Summary: Nanoparticles (NPs) as heterogeneous catalysts have large active surface area and size-dependent catalytic properties. The ability to computationally predict the most favorable NP structures for catalytic reactions is important for material optimization. However, simulations of NP model systems present unique challenges to computational scientists and require different data analysis strategies compared to simulations of single crystal surface models. This work aims to review analytical methods and data analysis strategies for extracting thermodynamic trends from NP simulations.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2023)

Article Materials Science, Multidisciplinary

Atmospheric Pressure Plasma-Jet Treatment of PAN-Nonwovens-Carbonization of Nanofiber Electrodes

Andreas Hoffmann, Matthias Uhl, Maximilian Ceblin, Felix Rohrbach, Joachim Bansmann, Marcel Mallah, Holger Heuermann, Timo Jacob, Alexander J. C. Kuehne

Summary: In this study, carbonization of polyacrylonitrile nanofiber nonwovens using an atmospheric pressure plasma jet was explored. The resulting carbon nanofiber nonwovens showed high conductivity and surface roughness, making them suitable for supercapacitor electrode applications with good capacitance performance.

C-JOURNAL OF CARBON RESEARCH (2022)

Article Chemistry, Multidisciplinary

Exploring the degradation of silver nanowire networks under thermal stress by coupling in situ X-ray diffraction and electrical resistance measurements

Laetitia Bardet, Herve Roussel, Stefano Saroglia, Masoud Akbari, David Munoz-Rojas, Carmen Jimenez, Aurore Denneulin, Daniel Bellet

Summary: The thermal instability of silver nanowires leads to increased electrical resistance in AgNW networks. Understanding the relationship between structural and electrical properties of AgNW networks is crucial for their integration as transparent electrodes in flexible optoelectronics. In situ X-ray diffraction measurements were used to study the crystallographic evolution of Ag-specific Bragg peaks during thermal ramping, revealing differences in thermal and structural transitions between bare and SnO2-coated AgNW networks.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Recording physiological and pathological cortical activity and exogenous electric fields using graphene microtransistor arrays in vitro

Nathalia Cancino-Fuentes, Arnau Manasanch, Joana Covelo, Alex Suarez-Perez, Enrique Fernandez, Stratis Matsoukis, Christoph Guger, Xavi Illa, Anton Guimera-Brunet, Maria V. Sanchez-Vives

Summary: This study provides a comprehensive characterization of graphene-based solution-gated field-effect transistors (gSGFETs) for brain recordings, highlighting their potential clinical applications.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Metal oxide-embedded carbon-based materials for polymer solar cells and X-ray detectors

Sikandar Aftab, Hailiang Liu, Dhanasekaran Vikraman, Sajjad Hussain, Jungwon Kang, Abdullah A. Al-Kahtani

Summary: This study examines the effects of hybrid nanoparticles made of NiO@rGO and NiO@CNT on the active layers of polymer solar cells and X-ray photodetectors. The findings show that these hybrid nanoparticles can enhance the charge carrier capacities and exciton dissociation properties of the active layers. Among the tested configurations, the NiO@CNT device demonstrates superior performance in converting sunlight into electricity, and achieves the best sensitivity for X-ray detection.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury

Hyo Jung Shin, Seung Gyu Choi, Fengrui Qu, Min-Hee Yi, Choong-Hyun Lee, Sang Ryong Kim, Hyeong-Geug Kim, Jaewon Beom, Yoonyoung Yi, Do Kyung Kim, Eun-Hye Joe, Hee-Jung Song, Yonghyun Kim, Dong Woon Kim

Summary: This study investigates the role of SOX9 in reactive astrocytes following ischemic brain damage using a PLGA nanoparticle plasmid delivery system. The results demonstrate that PLGA nanoparticles can reduce ischemia-induced neurological deficits and infarct volume, providing a potential opportunity for stroke treatment.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Spontaneous unbinding transition of nanoparticles adsorbing onto biomembranes: interplay of electrostatics and crowding

Anurag Chaudhury, Koushik Debnath, Nikhil R. Jana, Jaydeep K. Basu

Summary: The study investigates the interaction between nanoparticles and cell membranes, and identifies key parameters, including charge, crowding, and membrane fluidity, that determine the adsorbed concentration and unbinding transition of nanoparticles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab

Sina Sadeghi, Fazel Bateni, Taekhoon Kim, Dae Yong Son, Jeffrey A. Bennett, Negin Orouji, Venkat S. Punati, Christine Stark, Teagan D. Cerra, Rami Awad, Fernando Delgado-Licona, Jinge Xu, Nikolai Mukhin, Hannah Dickerson, Kristofer G. Reyes, Milad Abolhasani

Summary: In this study, an autonomous approach for the development of lead-free metal halide perovskite nanocrystals is presented, which integrates a modular microfluidic platform with machine learning-assisted synthesis modeling. This approach enables rapid and optimized synthesis of copper-based lead-free nanocrystals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

In situ growth of a redox-active metal-organic framework on electrospun carbon nanofibers as a free-standing electrode for flexible energy storage devices

Zahir Abbas, Nissar Hussain, Surender Kumar, Shaikh M. Mobin

Summary: The rational construction of free-standing and flexible electrodes for electrochemical energy storage devices is an emerging research focus. In this study, a redox-active metal-organic framework (MOF) was prepared on carbon nanofibers using an in situ approach, resulting in a flexible electrode with high redox-active behavior and unique properties such as high flexibility and lightweight. The prepared electrode showed excellent cyclic retention and rate capability in supercapacitor applications. Additionally, it could be used as a freestanding electrode in flexible devices at different bending angles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

A NIR-driven green affording-oxygen microrobot for targeted photodynamic therapy of tumors

Lishan Zhang, Xiaoting Zhang, Hui Ran, Ze Chen, Yicheng Ye, Jiamiao Jiang, Ziwei Hu, Miral Azechi, Fei Peng, Hao Tian, Zhili Xu, Yingfeng Tu

Summary: Photodynamic therapy (PDT) is a promising local treatment modality in cancer therapy, but its therapeutic efficacy is restricted by ineffective delivery of photosensitizers and tumor hypoxia. In this study, a phototactic Chlorella-based near-infrared (NIR) driven green affording-oxygen microrobot system was developed for enhanced PDT. The system exhibited desirable phototaxis and continuous oxygen generation, leading to the inhibition of tumor growth in mice. This study demonstrates the potential of using a light-driven green affording-oxygen microrobot to enhance photodynamic therapy.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Novel hollow MoS2@C@Cu2S heterostructures for high zinc storage performance

Yujin Li, Jing Xu, Xinqi Luo, Futing Wang, Zhong Dong, Ke-Jing Huang, Chengjie Hu, Mengyi Hou, Ren Cai

Summary: In this study, hollow heterostructured materials were constructed using an innovative template-engaged method as cathodes for zinc-ion batteries. The materials exhibited fast Zn2+ transport channels, improved electrical conductivity, and controlled volume expansion during cycling. The designed structure allowed for an admirable reversible capacity and high coulombic efficiency.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Mechanistic elucidation of the catalytic activity of silver nanoclusters: exploring the predominant role of electrostatic surface

Paritosh Mahato, Shashi Shekhar, Rahul Yadav, Saptarshi Mukherjee

Summary: This study comprehensively elucidates the role of the core and electrostatic surface of metal nanoclusters in catalytic reduction reactions. The electrostatic surface dramatically modulates the reactivity of metal nanoclusters.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Facile green synthesis of wasted hop-based zinc oxide nanozymes as peroxidase-like catalysts for colorimetric analysis

Pei Liu, Mengdi Liang, Zhengwei Liu, Haiyu Long, Han Cheng, Jiahe Su, Zhongbiao Tan, Xuewen He, Min Sun, Xiangqian Li, Shuai He

Summary: This study demonstrates a simple and environmentally-friendly method for the synthesis of zinc oxide nanozymes (ZnO NZs) using wasted hop extract (WHE). The WHE-ZnO NZs exhibit exceptional peroxidase-like activity and serve as effective catalysts for the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). In addition, a straightforward colorimetric technique for detecting both H2O2 and glucose was developed using the WHE-ZnO NZs as peroxidase-like catalysts.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Impact of channel nanostructures of porous carbon particles on their catalytic performance

Hyunkyu Oh, Young Jun Lee, Eun Ji Kim, Jinseok Park, Hee-Eun Kim, Hyunsoo Lee, Hyunjoo Lee, Bumjoon J. Kim

Summary: Mesoporous carbon particles have unique structural properties that make them suitable as support materials for catalytic applications. This study investigates the impact of channel nanostructures on the catalytic activity of porous carbon particles (PCPs) by fabricating PCPs with controlled channel exposure on the carbon surface. The results show that PCPs with highly open channel nanostructures exhibit significantly higher catalytic activity compared to those with closed channel nanostructures.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Fabrication of a tough, long-lasting adhesive hydrogel patch via the synergy of interfacial entanglement and adhesion group densification

Yunjie Lu, Zhaohui Li, Zewei Li, Shihao Zhou, Ning Zhang, Jianming Zhang, Lu Zong

Summary: A tough, long-lasting adhesive and highly conductive nanocomposite hydrogel (PACPH) was fabricated via the synergy of interfacial entanglement and adhesion group densification. PACPH possesses excellent mechanical properties, interfacial adhesion strength, and conductivity, making it a promising material for long-term monitoring of human activities and electrocardiogram signals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Strongly coupled plasmonic metal nanoparticles with reversible pH-responsiveness and highly reproducible SERS in solution

Zichao Wei, Audrey Vandergriff, Chung-Hao Liu, Maham Liaqat, Mu-Ping Nieh, Yu Lei, Jie He

Summary: We have developed a simple method to prepare polymer-grafted plasmonic metal nanoparticles with pH-responsive surface-enhanced Raman scattering. By using pH-responsive polymers as ligands, the aggregation of nanoparticles can be controlled, leading to enhanced SERS. The pH-responsive polymer-grafted nanoparticles show high reproducibility and sensitivity in solution, providing a novel approach for SERS without the need for sample pre-concentration.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Unlocking the full potential of citric acid-synthesized carbon dots as a supercapacitor electrode material via surface functionalization

Melis Ozge Alas Colak, Ahmet Gungor, Merve Buldu Akturk, Emre Erdem, Rukan Genc

Summary: This research investigates the effect of functionalizing carbon dots with hydroxyl polymers on their performance as electrode materials in a supercapacitor. The results show that the functionalized carbon dots exhibit excellent electrochemical performance and improved stability.

NANOSCALE (2024)