4.7 Article

Comparative Study on the Stiffness of Poly(lactic acid) Reinforced with Untreated and Bleached Hemp Fibers

期刊

POLYMERS
卷 15, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/polym15132960

关键词

biocomposites; cellulose fiber; micromechanics; natural fibers; poly(lactic acid); Young's modulus

向作者/读者索取更多资源

This study investigated the incorporation of natural hemp fibers into a poly(lactic acid) matrix to create fully bio-sourced composites. The tensile modulus of the composites linearly increased with the volume fraction of the dispersed fibers, reaching a maximum value of 7.6 Gpa. The performance of the soda-bleached fibers as reinforcement was found to be higher than that of glass fibers, despite their lower intrinsic tensile modulus.
Composite materials containing natural reinforcement fibers, generally called biocomposites, have attracted the interest of both researchers and manufacturers, but the most environmentally advantageous combinations include a bio-based matrix, as well. With this in mind, a poly(lactic acid) (PLA) matrix was reinforced with natural fibers from hemp, both untreated strands (UHSs) and soda-bleached fibers (SBHFs). The preparation of the subsequent fully bio-sourced, discontinuously reinforced composites involved kinetic mixing, intensive single-screw extrusion, milling, and injection molding. Up to a fiber content of 30 wt%, the tensile modulus increased linearly with the volume fraction of the dispersed phase. Differences between SBHFs (up to 7.6 Gpa) and UHSs (up to 6.9 Gpa) were hardly significant (p = 0.1), but SBHF-reinforced composites displayed higher strain at failure. In any case, for the same fiber load (30 wt%), the Young's modulus of PLA/hemp biocomposites was greater than that of glass fiber (GF)-reinforced polypropylene (5.7 GPa), albeit lower than that of PLA/GF (9.8 GPa). Considering all the measurements, the contribution of each phase was analyzed by applying the Hirsch model and the Tsai-Pagano model. As a concluding remark, although the intrinsic tensile modulus of SBHFs was lower than that of GF, the efficiency of those natural fibers as reinforcement (according to the rule of mixtures) was found to be higher.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据