4.8 Article

Restoration of PITPNA in Type 2 diabetic human islets reverses pancreatic beta-cell dysfunction

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-39978-1

关键词

-

向作者/读者索取更多资源

Type 2 diabetes (T2D) is characterized by pancreatic beta-cell failure. Restoration of Phosphatidylinositol transfer protein alpha (PITPNA) in T2D islets reverses impaired insulin granule maturation, exocytosis, and ER stress. PITPNA deficiency accompanies beta-cell dysfunction in T2D.
Type 2 diabetes (T2D) is characterized by pancreatic beta-cell failure. Here, the authors show restoration of Phosphatidylinositol transfer protein alpha (PITPNA), a mediator of PtdIns-4-phosphate synthesis in the trans-Golgi network, in human T2D islets reverses impaired insulin granule maturation, exocytosis, and ER stress. Defects in insulin processing and granule maturation are linked to pancreatic beta-cell failure during type 2 diabetes (T2D). Phosphatidylinositol transfer protein alpha (PITPNA) stimulates activity of phosphatidylinositol (PtdIns) 4-OH kinase to produce sufficient PtdIns-4-phosphate (PtdIns-4-P) in the trans-Golgi network to promote insulin granule maturation. PITPNA in beta-cells of T2D human subjects is markedly reduced suggesting its depletion accompanies beta-cell dysfunction. Conditional deletion of Pitpna in the beta-cells of Ins-Cre, Pitpna(flox/flox) mice leads to hyperglycemia resulting from decreasing glucose-stimulated insulin secretion (GSIS) and reducing pancreatic beta-cell mass. Furthermore, PITPNA silencing in human islets confirms its role in PtdIns-4-P synthesis and leads to impaired insulin granule maturation and docking, GSIS, and proinsulin processing with evidence of ER stress. Restoration of PITPNA in islets of T2D human subjects reverses these beta-cell defects and identify PITPNA as a critical target linked to beta-cell failure in T2D.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据