4.7 Article

An ex vivo model of Toxoplasma recrudescence reveals developmental plasticity of the bradyzoite stage

期刊

MBIO
卷 -, 期 -, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mbio.01836-23

关键词

Apicomplexa; Toxoplasma gondii; development; tissue cyst; latency; chronic toxoplasmosis

向作者/读者索取更多资源

The recrudescence of Toxoplasma cysts is the cause of clinical disease in immunocompromised individuals. A new ex vivo model revealed the cell biology and gene expression underlying the reactivation of bradyzoite-cyst, and discovered previously unknown complexities in the clinically important bradyzoite stage. This revised model opens up opportunities for further study of these novel developmental features of the Toxoplasma intermediate life cycle.
The recrudescence of Toxoplasma cysts is the cause of clinical disease in the immunocompromised. Although Toxoplasma has been a useful parasite model for decades because it is relatively easy to genetically modify and culture, attempts to generate and study the recrudescence of tissue cysts have come up short with cell culture-adapted strains generating low numbers of tissue cysts in vivo. Taking advantage of a new ex vivo model of Toxoplasma recrudescence that uses a Type II ME49 strain unadapted to cell culture, we determined the cell biology, gene expression, and host cell dependency that define bradyzoite-cyst reactivation. Bradyzoite infection of fibroblasts and astrocytes produced sequential tachyzoite growth stages with pre-programmed kinetics; thus, an initial fast-growing stage was followed by a slow-growing replicating form. In vivo infections demonstrated that only fast growth tachyzoites, and not parasites post-growth shift, led to successful parasite dissemination to the brain and peripheral organs. In astrocytes, cells that reside in the central nervous system (CNS), bradyzoites initiated an additional recrudescent pathway involving brady-brady replication, which is a pathway not observed in fibroblasts. To investigate the molecular basis of growth and cell-dependent reactivation pathways, single-cell mRNA sequencing was performed on recrudescing parasites, revealing distinct gene signatures of these parasite populations and confirming multifunctionality of the original ex vivo bradyzoite population. This revised model of Toxoplasma recrudescence uncovers previously unknown complexity in the clinically important bradyzoite stage of the parasite, which opens the door to further study these novel developmental features of the Toxoplasma intermediate life cycle. IMPORTANCE The classical depiction of the Toxoplasma lifecycle is bradyzoite excystation conversion to tachyzoites, cell lysis, and immune control, followed by the reestablishment of bradyzoites and cysts. In contrast, we show that tachyzoite growth slows independent of the host immune response at a predictable time point following excystation. Furthermore, we demonstrate a host cell-dependent pathway of continuous amplification of the cyst-forming bradyzoite population. The developmental plasticity of the excysted bradyzoites further underlines the critical role the cyst plays in the flexibility of the lifecycle of this ubiquitous parasite. This revised model of Toxoplasma recrudescence uncovers previously unknown complexity in the clinically important bradyzoite stage of the parasite, which opens the door to further study these novel developmental features of the Toxoplasma intermediate life cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据