4.2 Review

Effects of exercise training on glucocorticoid-induced muscle atrophy: Literature review

期刊

STEROIDS
卷 195, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.steroids.2023.109240

关键词

Dexamethasone; Skeletal muscle; Strength training

向作者/读者索取更多资源

Glucocorticoids (GCs) administration is widely used for its anti-inflammatory, anti-allergic, and immunosuppressive properties. However, it can also lead to muscle atrophy by inhibiting muscle protein synthesis. Animal models help in understanding the molecular pathways involved in this process. Exercise training can mitigate GCs-induced muscle atrophy, both in continuous exercise and resistance exercise.
Glucocorticoids (GCs) administration, such as cortisol acetate (CA) and dexamethasone (DEXA), is used worldwide due to their anti-inflammatory, anti-allergic, and immunosuppressive properties. However, muscle atrophy is one of the primary deleterious induced responses from the chronic treatment with GCs since it stimulates muscle degradation inhibiting muscle protein synthesis. Animal models allow a better understanding of the molecular pathways involved in this process of gene modulation and production of hypertrophic and atrophic proteins. The treatment with GCs, such as DEXA, promotes the reduction of hypertrophic proteins such as serine/ threonine tyrosine kinase (AKT), protein kinase mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (p70S6K) and increased gene expression or production of atrophic proteins, such as myostatin, muscle atrophic F-box (atrogin-1), or muscle ring finger protein-1 (MuRF-1). In both continuous exercise (CE) and resistance exercise (RE) forms, exercise training is used to mitigate muscle atrophy induced by GCs. The CE attenuated muscle atrophy induced by CA or DEXA in the plantaris and extensor digitorum longus muscles, while RE mitigated the DEXA-induced atrophy in plantaris and flexor hallucis longus muscles. The RE response appears to have occurred by modulation of hypertrophic proteins through increased protein production or phosphorylated/total ratio of mTOR and p70S6K and decreased atrophic protein production of MuRF-1. CE needs future research to understand the molecular pathways of its protective response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据