4.7 Article

Synergistic effect between molybdenum back contact and CIGS absorber in the degradation of solar cells

期刊

PROGRESS IN PHOTOVOLTAICS
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/pip.3742

关键词

CIGS; degradation; in situ Raman; interfaces; molybdenum; outdoor durability

向作者/读者索取更多资源

This study investigates the stability of the interfaces between molybdenum back contact and CIGS absorber layers in CIGS-based solar cells. The results indicate that the molybdenum layer degrades through oxidation when exposed to humidity and temperature variations as well as atmospheric pollution, while the CIGS layer is less affected.
The stability of molybdenum (Mo) back contact and Cu (InxGa(1-x)Se2(CIGS) absorber layers interfaces relevant for CIGS-based solar cells was investigated using accelerated aging test, considering humidity and temperature daily variations as well as atmospheric pollution. Different configurations of sputtered Mo and co-evaporated CIGS layers deposited on soda lime glass with or without ALD-Al2O3 encapsulation were investigated. They were exposed for 14 days to 24 h-cycles of temperature and humidity (25 degrees C at 85% RH and 80 degrees C at 30% RH) with and without solution of the pollutant salts (NaCl, Na2SO4, and (NH4)2SO4) deposited as drops on the sample to mimic marine, industrial, and rural atmospheric conditions, respectively. ALD-Al2O3 encapsulation failed to protect the samples against the pollutants regardless of configuration. The evolution of the films was characterized by Raman spectroscopy, grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Unencapsulated Mo degraded forming a mixture of oxides (MoO2, MoO3, and Mo8O23). Unencapsulated CIGS on glass substrates was not altered, whereas dark spots were visible at the surface of Mo/CIGS configurations. Further characterization evidenced that even though the Mo layer was buried, its corrosion products were formed on top of CIGS. Mo corrosion products and copper selenide, Cu2-xSe, were identified in dark spots. Their formation and evolution were further investigated by in situ Raman spectroscopy. A speculative mechanism explaining the interplay of molybdenum and CIGS layers during aging is proposed. In place of Mo oxides, detected on the open surface of bare Mo, soluble molybdates are expected in confined environment where alkalinity locally increases. The molybdate ions may then react with sodium ions accumulated at the grain boundaries of CIGS, forming Na2MoO4. The latter could form Na2Mo2O7 during drying because of pH decrease by atmospheric CO2 adsorption. High pH in confined zone, combined with relatively high temperature, is also believed to lixiviate gallium into soluble tetragallates [Ga (OH)4]2-, which could precipitate into Ga2O3 with pH decrease leaving Ga depleted Cu2-xSe. We study the effect of atmospheric aerosol pollutants on the degradation mode of layers and interfaces representative for CIGS solar cells under temperature and humidity cycling. ALD-Al2O3 encapsulation successfully protected Mo and CIGS exposed to the temperature and humidity variation but failed to protect the samples in the presence of pollutants. Black spots appeared on the non-encapsulated samples, and in situ Raman spectroscopy demonstrated that their formation is due to a synergistic effect between molybdenum back contact and CIGS absorber.image

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据