4.5 Article

Investigation on active vibration control to improve surface quality in precision milling process

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/09544054231207422

关键词

Surface quality; precision milling; dynamic modeling; active vibration control; control algorithms

向作者/读者索取更多资源

In this study, an active vibration control model and corresponding platform were developed to address the vibration problem in precision milling process. By applying different algorithm control strategies, the effectiveness of active vibration control was simulated and analyzed. Experimental results confirmed the validity of the proposed active vibration control methods.
The tool-workpiece vibration in the precision milling process plays a pivotal role in influencing the surface quality. To solve the machining problem coming with the process vibration, the active vibration control model as well as the corresponding platform are developed, and the active vibration control algorithms are applied to reduce the relative vibrations and improve the surface quality. Firstly, the milling vibration reduction and surface quality improvement are modeled based on the active control algorithms and the system dynamic characteristics. Then, applying the different algorithm control strategies, such as PID, Fuzzy PID, BP neural network, and BP neural network PID control, the control effect is simulated and analyzed. Finally, an experimental platform is established to validate the system's reliability. The efficiency of various active control methods is compared in terms of frequency vibration control and surface finish roughness improvement. The results indicate that under different milling parameters, the four algorithm control strategies exhibit optimal effects of 13.5%, 30.4%, 28.8%, and 40.1% respectively. These findings provide valuable insights into selecting the optimal vibration control method for precision milling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据