4.7 Article

The Carbon Flow Shifts from Primary to Secondary Metabolism during Xylem Vessel Cell Differentiation in Arabidopsis thaliana

期刊

PLANT AND CELL PHYSIOLOGY
卷 -, 期 -, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcad130

关键词

C-13 labeling; Arabidopsis thaliana; Carbon flow; Metabolomics; Secondary cell walls; Xylem vessel cell

向作者/读者索取更多资源

Carbon flow shifts from glycolysis to the shikimate pathway during xylem vessel cell differentiation, accompanied by active changes in the levels of cellulose and lignin precursors.
Xylem vessel cell differentiation is characterized by the deposition of a secondary cell wall (SCW) containing cellulose, hemicellulose and lignin. VASCULAR-RELATED NAC-DOMAIN7 (VND7), a plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factor, is a master regulator of xylem vessel cell differentiation in Arabidopsis (Arabidopsis thaliana). Previous metabolome analysis using the VND7-inducible system in tobacco BY-2 cells successfully revealed significant quantitative changes in primary metabolites during xylem vessel cell differentiation. However, the flow of primary metabolites is not yet well understood. Here, we performed a metabolomic analysis of VND7-inducible Arabidopsis T87 suspension cells. Capillary electrophoresis-time-of-flight mass spectrometry quantified 57 metabolites, and subsequent data analysis highlighted active changes in the levels of UDP-glucose and phenylalanine, which are building blocks of cellulose and lignin, respectively. In a metabolic flow analysis using stable carbon 13 (C-13) isotope, the C-13-labeling ratio specifically increased in 3-phosphoglycerate after 12 h of VND7 induction, followed by an increase in shikimate after 24 h of induction, while the inflow of C-13 into lactate from pyruvate was significantly inhibited, indicating an active shift of carbon flow from glycolysis to the shikimate pathway during xylem vessel cell differentiation. In support of this notion, most glycolytic genes involved in the downstream of glyceraldehyde 3-phosphate were downregulated following the induction of xylem vessel cell differentiation, whereas genes for the shikimate pathway and phenylalanine biosynthesis were upregulated. These findings provide evidence for the active shift of carbon flow from primary metabolic pathways to the SCW polymer biosynthetic pathway at specific points during xylem vessel cell differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据