4.3 Article

A SCN10A SNP biases human pain sensitivity

期刊

MOLECULAR PAIN
卷 12, 期 -, 页码 -

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/1744806916666083

关键词

Nav1.8; dorsal root ganglion; pain; voltage-gated sodium channel

资金

  1. National Nature Science Foundation of China [81271235]
  2. Rehabilitation Research Service and Medical Research Service, Department of Veterans Affairs

向作者/读者索取更多资源

Background: Nav1.8 sodium channels, encoded by SCN10A, are preferentially expressed in nociceptive neurons and play an important role in human pain. Although rare gain-of-function variants in SCN10A have been identified in individuals with painful peripheral neuropathies, whether more common variants in SCN10A can have an effect at the channel level and at the dorsal root ganglion, neuronal level leading to a pain disorder or an altered normal pain threshold has not been determined. Results: Candidate single nucleotide polymorphism association approach together with experimental pain testing in human subjects was used to explore possible common SCN10A missense variants that might affect human pain sensitivity. We demonstrated an association between rs6795970 (G > A; p.Ala1073Val) and higher thresholds for mechanical pain in a discovery cohort (496 subjects) and confirmed it in a larger replication cohort (1005 female subjects). Functional assessments showed that although the minor allele shifts channel activation by -4.3mV, a proexcitatory attribute, it accelerates inactivation, an antiexcitatory attribute, with the net effect being reduced repetitive firing of dorsal root ganglion neurons, consistent with lower mechanical pain sensitivity. Conclusions: At the association and mechanistic levels, the SCN10A single nucleotide polymorphism rs6795970 biases human pain sensitivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据