4.5 Article

Finding analytical approximations for discrete, stochastic, individual-based models of ecology

期刊

MATHEMATICAL BIOSCIENCES
卷 365, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.mbs.2023.109084

关键词

Individual-based model; Site-based model; Spatial ecology; Approximation; Difference equations; Spatial correlations

向作者/读者索取更多资源

Discrete time, spatially extended models are important in ecology for modelling population dynamics. In this study, we investigated the approximations of individual-based models by top-down models and developed new descriptions for the spatial population dynamics. Our results show that dispersal stabilizes population dynamics and exhibits large-scale discrete oscillations.
Discrete time, spatially extended models play an important role in ecology, modelling population dynamics of species ranging from micro-organisms to birds. An important question is how 'bottom up', individual-based models can be approximated by 'top down' models of dynamics. Here, we study a class of spatially explicit individual-based models with contest competition: where species compete for space in local cells and then disperse to nearby cells. We start by describing simulations of the model, which exhibit large-scale discrete oscillations and characterize these oscillations by measuring spatial correlations. We then develop two new approximate descriptions of the resulting spatial population dynamics. The first is based on local interactions of the individuals and allows us to give a difference equation approximation of the system over small dispersal distances. The second approximates the long-range interactions of the individual-based model. These approximations capture demographic stochasticity from the individual-based model and show that dispersal stabilizes population dynamics. We calculate extinction probability for the individual-based model and show convergence between the local approximation and the non-spatial global approximation of the individual -based model as dispersal distance and population size simultaneously tend to infinity. Our results provide new approximate analytical descriptions of a complex bottom-up model and deepen understanding of spatial population dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据