4.5 Article

Microfluidic solvent extraction of La(III) with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (P507) by a microreactor

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cep.2015.03.003

关键词

La(III); Solvent extraction; P507; Microreactor

资金

  1. National Natural Science Foundation of China [U1302271]
  2. National Program on Key Basic Research Project of China, (973 Program) [2014CB643404]
  3. Young and Middle-aged Academic Technology Leader Backup Talent Cultivation Program in Yunnan Province, China [2012HB008]
  4. Yunnan Provincial Science and Technology Innovation Talents scheme - Technological Leading Talent [2013HA002]
  5. Kunming University of Science and Technology Personnel Training Fund [KKSY201452088]

向作者/读者索取更多资源

A new solvent extraction system of extracting La(III) with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (P507) has been investigated to intensify the extraction process in microreactor, and solve the problems like long mixing time, low processing capacity, large factory area occupation, and high energy consumption in the conventional rare earth solvent extraction equipment. In this work, extraction equilibrium studies show that the initial aqueous pH value 4.00 and saponification rate 40% are the optimal operation condition. The effects of volumetric flow rate on extraction efficiency are analyzed, and the results indicate that increasing flow ratio could improve the extraction efficiency greatly, up to almost 100%, and the two phases keep parallel flow while keeping an aqueous-organic interface in the microchannel. The mass transfer rate is proportional to the initial pH and P507 concentration, and approaches almost a constant value at high pH and extractant concentration, and the transfer process between the two phases accompanied with an interface chemical reaction is confirmed to proceed satisfactorily in a short time (residence time = 0.37 s). The features of the microreactors, i.e., large specific surface area and short diffusion distance are effective for the efficient extraction of La(III). (c) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Energy & Fuels

Supercritical deposition of mono- and bimetallic Pd and Pt on TiO2 coated additively manufactured substrates for the application in the direct synthesis of hydrogen peroxide

Laura L. Trinkies, Marlene Crone, Michael Tuerk, Manfred Kraut, Roland Dittmeyer

Summary: In this study, mono- and bimetallic Pd and Pt catalysts were deposited via supercritical fluid reactive deposition (SFRD) on TiO2 coated additively manufactured substrates. The focus of this work was to evaluate the suitability of these catalysts for the direct synthesis of H2O2 in the liquid phase. The results showed that all catalysts exhibited high activity and productivity, with PdPt bimetallic catalysts showing the highest productivity and an increase in Pd loading leading to a decrease in productivity. Comparison with literature data demonstrated the high suitability of the SFRD method for the proposed application, with the added benefits of simplicity and environmental friendliness in catalyst production.

CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION (2024)

Article Energy & Fuels

On the design of a hydrogen micro-rectangular combustor for portable thermoelectric generators

Xiongbao Hu, Zuguo Shen, Yu Wang

Summary: It is impossible to control the outer wall temperature of the micro-combustor below the maximum allowable temperature of commercial thermoelectric generators simply through increasing the equivalent heat transfer coefficient. Three simple strategies were developed to improve temperature uniformity, yet none of them could ensure full temperature control.

CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION (2024)