4.4 Article

DFT and TDDFT exploration on the role of pyridyl ligands with copper toward bonding aspects and light harvesting

期刊

JOURNAL OF MOLECULAR MODELING
卷 29, 期 11, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00894-023-05765-4

关键词

DFT/TDDFT; Electronic structures; NBO; MEP map; Role of polypyridyl ligands; Copper complexes

向作者/读者索取更多资源

In this study, a coordination polymer-derived complex was theoretically explored using DFT/TDDFT to understand the structural and electronic transitions of different pyridyl-based ligands. The results showed that a complex with pyridine-4-carboxamide as a ligand exhibited higher reactivity and light harvesting efficiency.
ContextSchiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural-functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440-448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data.MethodsAll DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据