4.7 Article

Realigning the melon chains in carbon nitride by rubidium ions to promote photo-reductive activities for hydrogen evolution and environmental remediation

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 453, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.131435

关键词

Carbon nitride; Water splitting; Disinfection; Photo-degradation

向作者/读者索取更多资源

A crystalline structure of rubidium ion inserted PCN was synthesized, which exhibited enhanced photocatalytic activity and potential for energy and environmental applications.
The photocatalytic efficiency of polymeric carbon nitride (PCN) suffers from unsatisfactory charge separation because of its amorphous structure. Herein, we report a simple bottom-up method to synthesize a novel structure of rubidium ion inserted PCN (Rb-PCN), which involves the regular alignment of melon chains to endow a crystalline feature in PCN. The insertion of Rb+ decreased not only the N p electrons in the heptazine ring but also the plane angle of the heptazine motifs in the melon chain, which promoted the long-range periodicity and crystallinity of carbon nitride. This structurally rearranged crystalline Rb-PCN demonstrated considerably enhanced separation of charge carriers, resulting in six-fold higher photocatalytic hydrogen evolution activity than its amorphous counterpart. Furthermore, the photoexcited electrons can be efficiently trapped by O2 to generate H2O2, which facilitates the production of reactive oxygen species to inactivate bacteria and degrade organic pollutants, showing great potential for use in both energy and environmental applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据