4.5 Article

Mean wake evolution behind low aspect-ratio wall-mounted finite prisms

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijheatfluidflow.2023.109237

关键词

Bluff body; Wall-mounted prism; Mean flow; Wake evolution; Vortex structures

向作者/读者索取更多资源

The evolution of mean wake topology of wall-mounted prisms with varying depth-ratio is examined numerically. It is found that increasing the depth-ratio leads to the evolution of the mean wake from Quadrupole to Dipole, with the downwash flow dominating in dictating the wake topology.
The evolution in the mean wake of wall-mounted prisms with varying depth-ratio (length-to-width) between 0.016 and 4 is examined numerically over a range of Reynolds numbers (Re = 50 -500). The aspect-ratio (height-to-width) of the prism is limited to 1. This study aims to ascertain the mechanism of the evolution of mean wake topology due to changing depth-ratio. The mean wake topology is classified into Dipole, Multipole, and Quadrupole types as functions of Reynolds number and depth-ratio. The threshold depth-ratio for the wake evolution changes with Reynolds number. The Multipole-type wake appears as an evolutionary or intermediate wake pattern between Dipole and Quadrupole-type wakes. Increasing the depth-ratio leads to the enhancement of the downwash flow, resulting in the mean wake evolving from Quadrupole to Dipole wake. This suggests that the downwash flow dominates in dictating the wake topology downstream of the prism. Enhancing the downwash flow (with increase in depth-ratio) results in the reattachment of the flow on the prism surfaces, which further results in the suppression of velocity gradients and streamwise momentum transfer downstream of the prism trailing edge. This suppression of gradients and momentum leads to the deterioration of the base vortex, which evolves the wake from Quadrupole (at a small depth-ratio) to Dipole-type (at a large depth-ratio).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据