4.0 Article

Modelling strategies for performing convection-permitting climate simulations

期刊

METEOROLOGISCHE ZEITSCHRIFT
卷 25, 期 2, 页码 149-163

出版社

E SCHWEIZERBARTSCHE VERLAGSBUCHHANDLUNG
DOI: 10.1127/metz/2015/0598

关键词

Convective permitting simulation; Domain size; Graupel parametrization; Nesting strategy; Microphysics; COSMO-CLM

资金

  1. Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT-Flanders)
  2. Hercules Foundation
  3. EWI Department of the Flemish government

向作者/读者索取更多资源

The computational cost still remains a limiting factor for performing convection-permitting climate simulations. Choosing a model set-up with the lowest computational cost without deteriorating the model performances is, therefore, of relevance before starting any decadal simulations at convection-permitting scale (CPS). In this study three different strategies that aim at reducing this computational cost are evaluated. These strategies are (1) excluding graupel in the microphysical scheme, (2) reducing the nesting steps to downscale from ERA-Interim scale to CPS and (3) reducing the domain size. To test these strategies, the COSMO-CLM regional model was integrated over a four-month summer period for Belgium and evaluated using both radar and rain-gauges precipitation data. It was found that excluding the graupel parametrization at CPS induces a dry bias, but that excluding the graupel parametrization in the parent nest of the CPS simulation does not impact daily accumulated precipitation. In addition, it was also found that the best downscaling strategy is to use two nesting steps, in our case 25 km and 2.8 km. The 7 km nest was found to be redundant. Finally, it was found that a minimum distance of similar to 150 km between the evaluation domain and the lateral boundary is needed for daily precipitation to converge towards observed values. This indicates that the domain size must be large enough for the model to spin-up convective precipitation and in our case a domain size of 180 x 180 grid-points was found to be necessary. Our recommendations for CPS simulations at lowest computational cost are therefore (1) to include graupel parametrization at CPS but not in the parent nest, (2) to use two nesting steps to downscale from ERA-Interim to CPS and (3) to use a domain size large enough to allow for 150 km spatial spin-up.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据