4.7 Article

In-depth study of the mechanical properties for Fe3Al based iron aluminide fabricated using the wire-arc additive manufacturing process

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2016.05.047

关键词

Iron aluminide; Ferrous alloy; Additive manufacturing; Welding; Mechanical properties

资金

  1. China Scholarship Council (CSC)
  2. University of Wollongong (UOW)
  3. Welding Technology Institute of Australia (WTIA)

向作者/读者索取更多资源

An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate iron aluminide alloy in-situ, through separate feeding of pure Fe and Al wires into a molten pool that is generated by the gas tungsten arc welding (GTAW) process. This paper investigates the morphologies, chemical compositions and mechanical properties of the as-fabricated 30 at% Al iron aluminide wall components, and how these properties vary at different locations within the buildup wall. The tensile properties are also measured in different loading orientations; as epitaxial growth of large columnar grains is observed in the microstructures. Fe3Al is the only phase detected in the middle buildup section of the wall structure, which constitutes the majority of the deposited material. The bottom section of the structure contains a dilution affected region where some acicular Fe3AlC0.5 precipitates can be observed, induced by carbon from the steel substrate that was used for fabrication. The microhardness and chemical composition indicate relatively homogeneous material properties throughout the buildup wall. However, the tensile properties are very different in the longitudinal direction and normal directions, due to epitaxial growth of large columnar grains. In general, the results have demonstrated that the WAAM process is capable of producing full density in-situ-alloyed iron aluminide components with tensile properties that are comparable to powder metallurgy methods. Crown Copyright (C) 2016 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据