4.7 Article

Atomic size and local order effects on the high temperature strength of binary Mg alloys

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2016.07.019

关键词

Mg-Ca alloys; Creep strength; Short range order (SRO); Mg-RE alloys; Stress relaxation, Solid solution hardening

向作者/读者索取更多资源

The solid solution strengthening introduced by Ca (0.6 and 0.9 at%) and Sn 0.5-2.5 at%) was studied through tensile, compression and stress relaxation tests at room temperature, 373 K (100 degrees C) and 453 K (180 degrees C) on solution heat-treated and quenched specimens and compared with existing data for binary alloys containing Ca, Sn, Y, Gd, Nd, Zn and Al as well as for AZ91 alloy. At room temperature the solution hardening rate introduced by Ca and Sn was much higher than that of Al, matching those of Y, Gd and Zn. Calcium also reduced the tension/compression asymmetry. At high temperature Ca effectively prevented stress relaxation, nearly matching Y, Gd and Nd. Tin was less effective, but still outperformed Al and AZ91 at low stresses. The effects at room and high temperature introduced by Ca and Sn appeared consistent with the presence of short-range order, in line with those introduced by Y, Nd, Gd and Zn. The larger than Mg atom size of Ca, Nd, Gd and Y can be expected to intensify the local order by strengthening the atomic bonds through its effects on the local electron density, accounting for their greater strengthening at high temperature. For given difference in atomic size, the effects on the local order are expected to be lesser for smaller sized atoms like Sn and Zn, hence their more subdued effects. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据